PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 4 |

Tytuł artykułu

Manoeuvring prediction of KVLCC2 with hydrodynamic derivatives generated by a virtual captive model test

Autorzy

Języki publikacji

EN

Abstrakty

EN
This paper describes the application of computational fluid dynamics rather than a towing tank test for the prediction of hydrodynamic derivatives using a RANS-based solver. Virtual captive model tests are conducted, including an oblique towing test and circular motion test for a bare model scale KVLCC2 hull, to obtain linear and nonlinear hydrodynamic derivatives in the 3rd-order MMG model. A static drift test is used in a convergence study to verify the numerical accuracy. The computed hydrodynamic forces and derivatives are compared with the available captive model test data, showing good agreement overall. Simulations of standard turning and zigzag manoeuvres are carried out with the computed hydrodynamic derivatives and are compared with available experimental data. The results show an acceptable level of prediction accuracy, indicating that the proposed method is capable of predicting manoeuvring motions

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.16-26,fig.,ref.

Twórcy

autor
  • College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
autor
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China

Bibliografia

  • 1. IMO Res MSC (2002): Standards for Ship Manoeuvrability, 137 (76).
  • 2. IMO MSC/Circ.1053 (2002): Explanatory Notes to the Standards for Ship Manoeuvrability.
  • 3. ITTC, Manoeuvring Committee (2008): Final Report and Recommendations to the 25th ITTC. Proceedings of 25th International Towing Tank Conference, Fukuoka, Japan.
  • 4. Mofidi A., Carrica P.M. (2014): Simulations of Zigzag Maneuvers for a Container Ship with Direct Moving Rudder and Propeller. Comput. Fluids, 96, 191–203.
  • 5. Shen Z., Wan D., Carrica P.M. (2015): Dynamic Overset Grids in OpenFOAM with Application to KCS Self-Propulsion and Maneuvering. Ocean. Eng., 108, 287–306.
  • 6. Wang J., Zou L., Wan D. (2018): Numerical Simulations of Zigzag Maneuver of Free Running Ship in Waves by RANSOverset Grid Method. Ocean. Eng., 162, 55–79.
  • 7. Abkowitz, M.A. (1964): Lectures on Ship HydrodynamicsSteering and Manoeuvrability. In: Hydro- and Aerodynamics Lab, Report No. Hy-5, Lyngby, Copenhagen, Denmark.
  • 8. Yasukawa H., Yoshimura, Y. (2015): Introduction of MMG Standard Method for Ship Maneuvering Predictions. Journal of Marine Science and Technology, 20(1), 37–52.
  • 9. Sakamoto N., Carrica P.M., Stern F. (2012): URANS Simulations of Static and Dynamic Maneuvering for Surface Combatant: Part 1. Verification and Validation for Forces, Moment, and Hydrodynamic Derivatives. Journal of Marine Science and Technology, 17(4), 422–445
  • 10. Hai-peng G., Zao-jian Z. (2017): System-Based Investigation on 4-DOF Ship Maneuvering with Hydrodynamic Derivatives Determined by RANS Simulation of Captive Model Tests. Applied Ocean Research, 68, 11-25.
  • 11. Yi L., Lu Z., Zaojian Z., Haipeng G. (2018): Predictions of Ship Maneuverability Based on Virtual Captive Model Tests. Engineering Applications of Computational Fluid Mechanics, 12(1), 334–353.
  • 12. Kim H., Akimoto H., Islam H. (2015): Estimation of the Hydrodynamic Derivatives by RANS Simulation of Planar Motion Mechanism Test. Ocean Engineering, 108, 129–139.
  • 13. Islam H., Guedes Soares C. (2018): Estimation of Hydrodynamic Derivatives of a Container Ship Using PMM Simulation in OpenFOAM. Ocean Engineering, 108, 164–425.
  • 14. Ueno M., Yoshimura Y., Tsukada Y., Miyazaki H. (2009): Circular Motion Tests and Uncertainty Analysis for Ship Maneuverability. Journal of Marine Science and Technology, 14, 469–484.
  • 15. Yoshimura Y., Ueno M., Tsukada Y. (2008): Analysis of Steady Hydrodynamic Force Components and Prediction of Manoeuvring Ship Motion with KVLCC1, KVLCC2 and KCS. SIMMAN 2008, Workshop on verification and validation of ship manoeuvring simulation method, Workshop Proceedings, Vol. 1, Copenhagen, pp. E80–E86.
  • 16. SIMMAN (2008): Part C Captive and Free Model Test Data. Workshop on verification and validation of ship manoeuvring simulation method, Workshop Proceedings, Vol. 1, Copenhagen.
  • 17. Stern F., Wilson R.V., Coleman H.W., Paterson E.G. (2001): Comprehensive Approach to Verification and Validation of CFD Simulations Part 1: Methodology and Procedures. Journal of Fluids Engineering, 123(4), 793–802.
  • 18. Wilson R., Shao J., Stern F. (2004): Discussion: Criticisms of the “Correction Factor” Verification Method. Journal of Fluids Engineering, 126(4), 704–706.
  • 19. SIMMAN (2014). Retrieved from http:// simman2014.dk/ship-data/moeri-kvlcc2-tanker/ geometry-and-conditions-moeri-kvlcc2-tanker/.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dbc3d314-662a-4930-ad23-75c50f4429a3