PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 3 |

Tytuł artykułu

Trigemino-hypoglossal somatic reflex in the pharmacological studies of nociception in orofacial area

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Disorders involving the orofacial area represent a major medical and social problem. They are a consequence of central nociceptive processes associated with stimulation of the trigeminal nerve nucleus. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neuropeptide solutions, can be used in the pharmacological studies of nociception in orofacial area. The investigated neuropeptides diffuse through the cerebroventricular lining producing an analgesic effect either directly, through the trigemino-hypoglossal reflex arc neurons or indirectly through the periaqueductal central gray, raphe nuclei or locus coeruleus neurons. The aim of this review is to present the effect of pharmacological activity of various neuropeptides affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

75

Numer

3

Opis fizyczny

p.253-263,fig.,ref.

Twórcy

autor
  • Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
autor
  • Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
autor
  • Chair of Experimental and Clinical Physiology, Department of Experimental Physiology, Medical University of Lodz, Lodz, Poland

Bibliografia

  • Alantar A, Azerad J, Limoge A, Robert C, Rokyta R, Pollin, B (1997) Potentiation of fentanyl suppression of the jaw¬-opening reflex by transcranial electrical stimulation. Brain Res 763: 14-20.
  • Arvidsson J, Gobel S (1981) An HRP study of central pro¬jections of primary trigeminal neurons with innervate tooth pulps in the cat. Brain Res 310: 1-16.
  • Azerad J, Woda A, Albe-Fassard D (1982) Physiological properties of neurons in different pars of the cat trigemi- nal sensory complex. Brain Res 246: 7-21.
  • Bach FW, Yaksh TL (1995) Release of p-endorphin immu- noreactivity into ventriculo-cisternal perfusate by lumbar intrathecal capsaicin in the rat. Brain Res 701: 192-200.
  • Beitz AJ, Mullett MA, Weiner LL (1983) The periaqueductal gray projections to the rat spinal trigeminal, raphe mag¬nus, gigantocellular pars alpha and paragigantocellular nuclei arise from separate neurons. Brain Res 288: 307¬314.
  • Bender IB (2000) Pulpal pain diagnosis - a review. J Endod 26: 175-179.
  • Benoliel R, Eliav E (2012) Neuropathic orofacial pain. Alpha Omegan 105: 66-74.
  • Bittencourt JC, Sawchenko PE (2000) Do centrally adminis¬tered neuropeptides access cognate receptors? An analy¬sis in the central corticotropin-releasing factor system. J Neurosci 20: 1142-1156.
  • Bjelke B, Fuxe K (1993) Intraventricular p-endorphin accu¬mulates in DARPP-32 immunoreactive tanycytes. Neuroreport 5: 265-268.
  • Black PM (1982) Neuropeptides in cerebrospinal fluid. Neurosurgery 11(4): 550-555.
  • Bloom F, Segal D (1980) Endorphins in the cerebrospinal fluid. In: Neurobiology of cerebrospinal fluid, Vol. 1 (Wood JH, Ed.). Plenum Press, New York, USA.
  • Brodin E, Gazelius B, Lundberg JM, Olgart L (1981) Substance P in trigeminal nerve endings: Occurrence and release. Acta Physiol Scand 111: 501-503.
  • Chapman CR, Gerlach R, Jacobson R, Buffington V, Kaufmann E (1986) Comparison of short-latency trigem- inal evoked potentials elicited by painful dental and gin¬gival stimulation. Electroencephalogr Clin Neurophysiol 65: 20-26.
  • Commons KG, Valentino RJ (2002) Cellular basis for the effects of substance P in the periaqueductal gray and dor¬sal raphe nucleus. J Comp Neurol 447: 82-97.
  • Gazelius B, Brodin E, Olgart L (1981) Depletion of Substance P-like immunoreactivity in the cat dental pulp by antidromic nerve stimulation. Acta Physiol Scand 111: 319-327.
  • Green JD, Negishi K (1963) Membrane potentials in hypo- glossal motoneurons. J Neurophysiol 26: 835-856.
  • Guerra M, Blazquez JL, Peruzzo B, Pelaez B, Rodriguez S, Toranzo D, Pastor F, Rodriquez EM (2010) Cell organiza¬tion of the rat pars tuberalis. Evidence for open commu¬nication between pars tuberalis cells, cerebrospinal fluid and tanycytes. Cell Tissue Res 339: 359-381.
  • Han SM, Ahn DK, Youn DH (2008) Pharmacological analy¬sis of excitatory and inhibitory synaptic transmission in horizontal brainstem slices preserving three subnuclei of spinal trigeminal nucleus. J Neurosci Methods 167: 221-228.
  • Hargreaves KM (2011) Congress orofacial pain. Pain 152: S25-S32.
  • Hayashi H, Sumino R, Sessle BJ (1984) Functional organi¬zation of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J Neurophysiol 51: 890-905.
  • Heinke B, Gingl E, Sandkühler J (2011) Multiple targets of ^-opioid receptor-mediated presynaptic inhibition at pri¬mary afferent A5- and C-fibers. J Neurosci 31: 1313¬1322.
  • Heinricher MM, Tavares I, Lejth JL, Lumb BM (2009) Descending control of nociception: Specificity, recruit¬ment and plasticity. Brain Res Rev 60: 214-225.
  • Heft MW (1992) Orofacial pain. Clin Geriatr Med 8: 557¬568.
  • Hua XY, Hayes CS, Hofer A, Fitzsimmons B, Kilk K, Langel U (2004) Galanin acts at GalR1 receptors in spi¬nal antinociception: synergy with morphine and AP-5. J Pharmacol Exp Ther 308: 574-582.
  • Hua XY, Salgado KF, Gu G, Fitzsimmons B, Kondo I, Bartfai T, Yaksh TL (2005) Mechanisms of antinocicep- tion of spinal galanin: how does galanin inhibit spinal sensitization?, Neuropeptides 39: 211-216.
  • Jackson IMD (1980) Significance and function of neuropep- tides in the cerebrospinal fluid, In: Neurobiology of Cerebrospinal Fluid, Vol. 1 (Wood JH, Ed.). Plenum Press, New York, USA. p. 625-650.
  • Jacquin MF, Semba K, Egger MD, Rhoades RW (1983) Organization on HRP-labelled trigeminal mandibular primary afferent neurons in the rat. J Comp Neurol 215: 397-420.
  • Jessel TM, Iversen LL (1977) Opiate analgesics inhibit sub¬stance P release from rat trigeminal nucleus. Nature 268: 549-551.
  • Kondo I, Marvizon JC, Song B, Salgado F, Codeluppi S, Hua XY, Yaksh TL (2005) Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci 25: 3651-3660.
  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communications. Front Neuroendocrinol 25: 150-176.
  • Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521: 3389-3405.
  • Lazarov NE (2007) Neurobiology of orofacial propriocep- tion. Brain Res Rev 56: 362-383.
  • Lesniak A, Lipkowski AW (2011). Opioid peptides in peripheral pain control. Acta Neurobiol Exp (Wars) 71: 129-138.
  • Leśnik H, Traczyk WZ (1978) Effect of increased concentra¬tions of Ca++ and Mg++ in the fluid perfusing the cere¬bral ventricles, and hypoxia on evoked tongue jerks. Acta Physiol Pol 29: 27-35.
  • Lu X, Geng X, Zhang L, Zeng Y, Dong H, Yu H (2009) Substance P expression in the distal cerebrospinal fluid- contacting neurons and spinal trigeminal nucleus in form¬alin-induced the orofacial inflammatory pain in rats. Brain Res Bull 78: 139-144.
  • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350: 412-438.
  • Marfurt CF, Turner DF (1984) The central projections of tooth pulp afferent neurons in the rat as determined by the transganglionic transport of horseradish peroxidase. J Comp Neurol 223: 535-547.
  • Martin R, Voigt KH (1981) Enkephalins co-exist with oxy¬tocin and vasopressin in nerve terminals of rat neurohy- pophysis. Nature 289: 502-504.
  • McDonough P, McKenna JP, McCreary Ch, Downer EJ (2014) Neuropathic orofacial pain: Cannabinoids as a therapeutic avenue. Int J Biochem Cell Biol 55: 72-78.
  • Morita N, Tamai Y, Tsujimoto T (1977) Unit response acti¬vated by tooth pulp stimulation in lateral hypothalamic area of rat. Brain Res 134: 158-160.
  • Oliveras JL, Wooda A, Guibaud G, Besson JH (1974) Inhibition of the jaw-opening reflex by electrical stimula¬tion of the periaqueductal gray in the awake unrestrained cat. Brain Res 72: 328-331.
  • Olszewski J (1950) On the anatomical and functional orga¬nization of spinal trigeminal nucleus. J Comp Neurol 92: 401-413.
  • Orlowska-Majdak M, Goraca A, Glabiński A, Traczyk WZ (1994) Vasopressin release into the 3rd cerebral ventricle and into the blood after sciatic and trigeminal nerve stimulation. J Physiol Pharmacol 45: 309-317.
  • Pajot J, Pelissier T, Sierralta F, Raboisson P, Dallel R (2000) Differential effects of trigeminal tractotomy on AS- and C-fiber-mediated nociceptive responses. Brain Res 863: 289-292.
  • Proescholdt MG, Hutto B, Brady LS, Herkenham M (2000) Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injec¬tions of the tracer [14C]inulin in rat. Neuroscience 95: 577-592.
  • Reichling DB, Kwiat GC, Basbaum AJ (1988) Anatomy, physi¬ology and pharmacology of the periaqueductal gray contribu-tion to antinociceptive controls. In: Pain Modulation (Fields HL, Besson JM, Eds). Prog Brain Res 77: 31-46.
  • Schul R, Frenk H (1991) The role of serotonin in analgesia elicited by morphine in the periaqueductal gray matter (PAG). Brain Res 553(2): 353-357.
  • Sessle BJ (2015) Are cannabinoids effective for orofacial pain states. J Oral Facial Pain Headache 29: 5-6.
  • Sessle BJ (2005) Orofacial pain. In: The Paths of Pain 1975-2005 (Merskey H, Loeser JD, Dubner R, Eds). IASP Press, Seattle, USA. p. 131-150.
  • Shults CW, Quirion R, Chronwall B, Chase T, O'Donohue T (1984) A comparison of the anatomical distribution of Substance P and Substance P receptors in the rat central nervous system. Peptides 5: 1097-1128.
  • Skofitsch G, Zamir N, Helke CJ, Savitt JM, Jacobowitz DM (1985) Corticotropin releasing factor-like immunoreac- tivity in sensory ganglia and capsaicin sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 6: 307-318.
  • Stewart WA, King RB (1963) Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. J Comp Neurol 121: 271-286.
  • Sugimoto T, Takemura M, Wakisaka S (1988) Cell size analysis of primary neurons innervating the cornea and tooth pulp of the rat. Pain 32: 375-381.
  • Sumino R, Nakamura Y (1974) Synaptic potentials of hypoglos- sal motoneurons and a cammon inhibitory interneuron in the trigemino-hypoglossal reflex. Brain Res 73: 439-454.
  • Toda K, Ichioka M, Iriki A (1980) Quantitative relations between noxious stimulus intensity and magnitude of central afferent evoked responses in rat. Neurosci Lett 17: 313-316.
  • Tomita A, Kato T, Sato F, Haque T, Oka A, Yamamoto M, Ono T, Bae YC, Maeda Y, Sessle BJ, Yoshida A (2012) Somatotopic direct projections from orofacial areas of primary somatosensory cortex to pons and medulla, espe¬cially to trigeminal sensory nuclear complex, in rats. Neuroscience 200: 166-185.
  • Tzabazis AZ, KlukinovM, Feliciano DP, Wilson SP, Yeomans DC (2014) Gene therapy for trigeminal pain in mice. Gene Ther 21: 422-426.
  • Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cere- brospinal fluid; a review. Cerebrospinal Fluid Res 7: 1.
  • Vigh B, Manzano E, Silva MJ, Frank CL, Vincze C, Czirok SJ, Szabo A, Lukats A, Szel A (2004) The system of cere- brospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol 19: 607-628.
  • Vigh-Teichmann I, Vigh B (1989) The cerebrospinal fluid- contacting neuron: a peculiar cell type of the central ner¬vous system. Immuno-cytochemical aspects. Arch Histol Cytol 52: 195-207.
  • Wiesenfeld-Hallin Z, Xu XJ, Villar MJ, Hokfelt T (1990) Intrathecal galanin potentiates the spinal analgesic effect of morphine: electrophysiological and behavioural stud¬ies. Neurosci Lett 109: 217-221.
  • Woda A, Azerad J, Albe-Fessard D (1977) Mapping of the trigeminal sensory complex of the cat. Characterization of its neurons by stimulations of peripheral field, dental pulp afferents and thalamic projections. J Physiol (Paris) 73: 367-378.
  • Xu XJ, Wiesenfeld-Hallin Z, Villar MJ, Fahrenkrug J, Hokfelt T (1990) On the role of galanin, substance P and other neuropeptides in primary sensory neurons of the rat: studies on spinal reflex excitability and peripheral axo- tomy. Eur J Neurosci 2: 733-743.
  • Yang J, Yang Y, Chen JM, Xu HT, Liu WY, Wang CH, Lin BC (2007) Arginine vasopressin in an important regula¬tor in antinociceptive modulation of hypothalamic para- ventricular nucleus in the rat. Neuropeptides 41: 165¬176.
  • Yang J, Yang Y, Xu HT, Chen JM, Liu, WY, Lin BC (2006) Arginine vasopressin enhances periaqueductal gray syn¬thesis and secretion of enkephalin and endorphin in the rat. Brain Res Bull 71: 193-199.
  • Zimmermann M (1977) Encoding in dorsal horn interneu- rons receiving noxious and non noxious afferents. J Physiol (Paris) 73: 211-232.
  • Zubrzycka M, Fichna J, Janecka A (2002) Effect of cerebral ventricles perfusion with morphiceptin and Met- enkephalin on trigemino-hypoglossal reflex in rats. J Physiol Pharmacol 53: 741-750.
  • Zubrzycka M, Fichna J, Janecka A (2005) Inhibition of trigemino-hypoglossal reflex in rats by oxytocin is medi¬ated by mu and kappa opioid receptors. Brain Res 1035: 67-72.
  • Zubrzycka M, Janecka A (2005) Effects of centrally admin¬istered vasopressin on orofacial pain perception in rats. Brain Res 1051: 112-116.
  • Zubrzycka M, Janecka A (2001) Effect of cerebral ventricles perfusion with naloxone on trigemino-hypoglossal reflex in rats. Regul Pept 97: 7-13.
  • Zubrzycka M, Janecka A (2007a) Effect of galanin on sub¬stance P- and vasoactive intestinal polypeptide-induced nociceptive trigeminio-hypoglossal reflex in rats. J Physiol Pharmacol 58: 479-486.
  • Zubrzycka M, Janecka A (2011) Effect of tooth pulp and periaqueductal central gray electrical stimulation on P-endorphin release into the fluid perfusing the cerebral ventricles in rats. Brain Res 1405: 15-22.
  • Zubrzycka M, Janecka A (2007b) Effect of tooth pulp stimu¬lation on oxytocin and vasopressin release into the cere- brospinal fluid and perfusing the cerebral ventricles in rats. Endocr Regul 41: 149-154.
  • Zubrzycka M, Janecka A (2008) Interactions of galanin with endomophin-2, vasopressin and oxytocin in nociceptive modulation of the trigemino-hypoglossal reflex in rats. Physiol Res 57: 769-776.
  • Zubrzycka M, Janecka A (2002) Substance P content in the cerebrospinal fluid and fluid perfusing cerebral ventricles during elicitation and inhibition of trigemino-hypoglossal reflex in rats. Brain Res 941: 29-33.
  • Zubrzycka M, Janecka A (2000) The effect of naloxone on trigemino-hypoglossal reflex inhibited by periaqueductal central gray stimulation in rats. J Physiol Pharmacol 51: 471-481.
  • Zubrzycka M, Janecka A, Koziołkiewicz W, Traczyk WZ (1997) Inhibition of tongue reflex in rats by tooth pulp stimulation during cerebral ventricle perfusion with (6-11) substance P analogs. Brain Res 753: 128-132.
  • Zubrzycka M, Szemraj J, Janecka A (2011) Effect of tooth pulp and periaqueductal central gray stimulation on the expression of genes encoding the selected neuropep¬tides and opioid receptors in the mesencephalon, hypo¬thalamus and thalamus in rats. Brain Res 1382: 19-28.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dbb9fa58-22b9-4835-af97-b8219ec197db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.