PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

Geoelectrical and geochemical characterization of groundwater in a shallow coastal aquifer

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Playa Las Glorias is the main tourist destination for the inhabitants of the municipality of Guasave, Sinaloa, México, and it overlies a shallow coastal aquifer. In recent years, the momentum of the tourism industry in the region has brought a growing demand in the consumption of drinking water. Because of this, it is relevant to the precise knowledge of the interface of slightly brackish saltwater for an efficient planning of new wells by the municipal authorities. For efficient groundwater exploitation, it was taken into consideration the productivity of the aquifer and the environmental impact that would cause improper management of water resources. The electromagnetic profiling (EMP) method was applied in Playa Las Glorias, Sinaloa, Mexico. A total of 150 measurements of EMP distributed in 11 profiles were performed, of which 10 were perpendicular to the coast and one parallel to it, using an EM34 meter in horizontal polarization and separation between coils of 10 m and 20 m. The apparent conductivity maps show an anomaly of low conductivity, indicating the presence of fresh or slightly saline water. In this anomalous zone we performed an electric resistivity tomography (ERT) profile to determine the behavior of groundwater salinity finding a shallow layer of freshwater, and as it deepens the salinity increases due to the influence of the sea. In addition, electrical resistivity (Rw) values were measured in groundwater samples that, along with the resistivity values (Rₒ) for sandy formation obtained from ERT data, allowed us to determine a lineal relationship between both resistivities. A hydro geochemical study was conducted in the site through Piper diagrams and Chadha, indicating a predominance in the region of chlorinated water due to the influence of the nearby sea. Finally, we determined the correlations between the water electrical conductivity values with the Cl⁻ anion and the Na⁺ and Mg²⁺ cations for the site, besides finding relationships between Na⁺-Cl⁻, Na⁺-Mg²⁺, and Cl⁻-Mg²⁺ with a superior adjustment to 0.98.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1511-1519,fig.,ref.

Twórcy

  • Instituto Politercnico Nacional, Unidad CIIDIR-Oaxaca. Hornos No. 1003, Noche Buena, Santa Cruz Xoxocotlan, Oaxaca, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachín, Guasave, Sinaloa, Mexico
  • Division de Geociencias Aplicadas, Instituto Potosino de Investigacion Científica y Tecnologica. Camino a la Presa San Jose 2055. Lomas 4 Seccion, San Luis Potosí, S.L.P., Mexico
autor
  • Moscow State University, Moscow, Russia
  • Centro de Investigacion Científica y de Educacion Superior de Ensenada, Baja California, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, B.C. Mexico
  • Instituto Politecnico Nacional, Unidad CIIDIR-Oaxaca. Hornos No. 1003, Noche Buena, Santa Cruz Xoxocotlan, Oaxaca, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachín, Guasave, Sinaloa, Mexico

Bibliografia

  • 1. TAYLOR R.G., SCANLON B., DÖLL P., RODELL M., VAN BEEK R., WADA Y., KONIKOW L. Ground water and climate change. Nature Climate Change. 3 (4), 322, 2013.
  • 2. WERNER A.D., BAKKER M., POST V.E., VANDENBOHEDE A., LU C., ATAIE-ASHTIANI B., BARRY D.A. Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources. 51, 3, 2013.
  • 3. FERGUSON G., GLEESON T. Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change. 2 (5), 342, 2012
  • 4. ANDERSON F., AL-THANI N. Effect of Sea Level Rise and Groundwater Withdrawal on Seawater Intrusion in the Gulf Coast Aquifer: Implications for Agriculture. Journal of Geoscience and Environment Protection. 4 (04), 116, 2016.
  • 5. LU C., XIN P., LI L., LUO J. Seawater intrusion in response to sea-level rise in a coastal aquifer with a general-head inland boundary. Journal of Hydrology. 522, 135, 2015.
  • 6. MOLERIO L. LESLIE F. Vulnerability indicators of karstic aquifers. Ingeniería Hidráulica y Ambiental, 25 (3), 56, 2004 [In Spanich].
  • 7. LUOMA S., OKKONEN J., KORKKA N. K. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeology Journal, 1, 2016.
  • 8. BENAVENTE J., F. CARRASCO C., ALMÉCIJA P. RODRÍGUEZ Y., CRUZ S. The transition zone of freshwater-brine under the edge of the salt lagoon of Fuente de Piedra (Málaga). Geogaceta. 14, 6, 1993 [In Spanish].
  • 9. GRANIEL E., VERA V. I., GONZÁLEZ L. Dynamics of the salt interface and water quality on the northeastern coast of Yucatan. Ingeniería, 8, (3), 15, 2004 [In Spanish].
  • 10. RAVIKUMAR P., SOMASHEKAR R.K., PRAKASH K.L. A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from SRLIS river basin, Karnataka, India. 80, 31073, 2015.
  • 11. MU X., BROWER J., SIEGEL D.I., FIORENTINO II A.J., AN S., CAI Y., XU D., JIANG H. Using integrated multivariate statistics to assess the hydrochemistry of surface water quality, Lake Taihu basin, China. Journal of Limnology, 74 (2), 234, 2015.
  • 12. BIGLARI H., CHAVOSHANI A., JAVAN N., HOSSEIN M. A. Geochemical study of groundwater conditions with special emphasis on fluoride concentration, Iran. Desalination and Water Treatment, 57, 1, 2016.
  • 13. PIPER A. A graphic procedure in the geochemical interpretation of water-analyses. Trans am geophysics union 25, 914, 1944.
  • 14. PEETERS L. A background color scheme for piper plots to spatially visualize hydrochemical patterns. Groundwater, 52 (1), 2, 2014.
  • 15. LI Y., TANG Y., ZHAO N., JIN B. Analysis on Chemical Characteristics and Prospect of Development and Utilization of Geothermal Fluids in Tuanbo New Town, Tianjin. Analysis, 19, 25, 2015.
  • 16. KUMAR P.S. Interpretation of groundwater chemistry using piper and Chadha’s diagrams: a comparative study from Perambalur Taluk. Elixir Geosci, 54, 12208, 2013.
  • 17. SUMA C.S., SRINIVASAMOORTHY K., SARAVANAN K., FAIZALKHAN A., PRAKASH R., GOPINATH S. Geochemical modeling of groundwater in Chinnar River basin: a source identification perspective. Aquatic Procedia, 4, 986, 2015.
  • 18. CHADHA D.K. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7 (5), 431, 1999.
  • 19. TEIXIDÓ T. The surface geophysical methods: a useful tool for the engineer. Procedia Engineering, 46, 89, 2012.
  • 20. PAZZI V., TAPETE D., CAPPUCCINI L., FANTI R. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment. Geomorphology, 273, 335, 2016.
  • 21. YANG X., LASSEN R. N., JENSEN K. H., LOOMS M. C. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. International Journal of Greenhouse Gas Control, 42, 534, 2015.
  • 22. SCHMIDT H.C., BERGMANN P., BÖSING D., LABITZKE T., MÖLLER M., SCHRÖDER S., WAGNER F., SCHÜTT H. Electrical resistivity tomography (ERT) for monitoring of CO2 migration-from tool development to reservoir surveillance at the Ketzin pilot site. Energy Procedia, 37, 4268, 2013.
  • 23. SCHMIDT H.C., BERGMANN P., LABITZKE T., WAGNER F. CO2 migration monitoring by means of electrical resistivity tomography (ERT) – review on five years of operation of a permanent ERT system at the ketzin pilot site. Energy Procedia 63, 4366, 2014.
  • 24. CHAMBERS J.E., MELDRUM P.I., WILKINSON P.B., WARD W., JACKSON C., MATTHEWS B., JOELC P., KURASA O., BAIB L., UHLEMANNA S., GUNN D. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated timelapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412, 2015.
  • 25. WAGNER F.M., MÖLLER M., SCHMIDT H.C., KEMPKA T., MAURER H. Monitoring freshwater salinization in analog transport models by time-lapse electrical resistivity tomography. Journal of Applied Geophysics, 89, 84, 2013.
  • 26. ABBAS A.M., GHAZALA H.H., MESBAH H.S., ATYA M.A., RADWAN A., HAMED D.E. Implementation of ground penetrating radar and electrical resistivity tomography for inspecting the Greco-Roman Necropolis at Kilo 6 of the Golden Mummies Valley, Bahariya Oasis, Egypt. NRIAG Journal of Astronomy and Geophysics, 5, 147, 2016.
  • 27. CHAMBERS J.E., MELDRUM P.I., WILKINSON P.B., WARD W., JACKSON C., MATTHEWS B., JOEL P., KURAS O., BAI L., UHLEMANN S., GUNN D. Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated timelapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412, 2015.
  • 28. GINGINE V., DIAS A.S., CARDOSO R. Compaction Control of Clayey Soils Using Electrical Resistivity Charts. Procedia Engineering, 143, 803, 2016.
  • 29. ARCHIE G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIMME 146, 54, 1942.
  • 30. SOUPIOS P.M., KOULI M., VALLIANATOS F., VAFIDIS A., STAVROULAKIS G. Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete-Greece). Journal of Hydrology, 338 (1), 122, 2007.
  • 31. KOSINSKI W.K., KELLY W.E. Geoelectric soundings for predicting aquifer properties. Ground Water, 19 (2), 163, 1981.
  • 32. PONZINI G., OSTROMAN A., MOLINARI M. Empirical relation between electrical transverse resistance and hydraulic transmissivity. Geoexploration, 22, 1, 1984.
  • 33. NIWAS S., CELIK M. Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. Journal of Applied Geophysics, 84, 77, 2012.
  • 34. EBONG E.D., AKPAN A.E., ONWUEGBUCHE A.A. Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. Journal of African Earth Sciences, 96, 99, 2014.
  • 35. GEORGE N.J., IBUOT J.C., OBIORA D.N. Geoelectro-hydraulic parameters of shallow sandy aquifer in Itu, Akwa Ibom State (Nigeria) using geoelectric and hydrogeological measurements. Journal of African Earth Sciences, 110, 52, 2015.
  • 36. INEGI. Municipal statistical notebook, Guasave, Sinaloa. Aguascalientes, Mexico, 1, 192, 2000 [In Spanish].
  • 37. CONAGUA (National Water Commission), Technical file justifying the aquifer of the Sinaloa River for the publication of availability in the Official Gazette of the Federation. Culiacán, Sinaloa. 2002 [In Spanish].
  • 38. KELLER G.V., FRISCHKNECHT F.C. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford. 1966.
  • 39. GEONICS LIMITED 2010. Geophysical Instrumentation for exploration and the environment .http://www.geonics.com/html/products.html
  • 40. LOKE M.H., BARKER R.D. Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44, 499, 1996.
  • 41. LOKE M.H., BARKER R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131, 1996.
  • 42. LOKE M.H., CHAMBERS J.E., RUCKER D.F., KURAS O., WILKINSON P.B. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135, 2013.
  • 43. RICHARDS L.A. Diagnosis and rehabilitation of saline and sodium soils. Manual 60. Staff of the USA Salinity Laboratory. Department of Agriculture of the United States of America., ed. LIMUSA, 172, 1954 [In Spanish].
  • 44. HEATH R.C. Basic Ground-Water Hydrology. U.S. Geological Survey Water-Supply paper 2220. United States Geological Survey, 81, 1991.
  • 45. HERBER L.G. Electrical conductivity apparent as a tool to define specific site Management Zones in corn (Zea mays) in the Province of Corrientes (Doctoral dissertation, Facultad de Ciencias Agrarias y Forestales). 2011.
  • 46. SOLA F., ESPAÑA S., VALLEJOS Á., PULIDO B.A. Hydrogeochemical characterization of the groundwater of Cabo de Gata (Almería). GEOGACETA, 58, 135, 2015 [In Spanish].
  • 47. ALY A.A., KISHK F.M., GABER, H.M., AL-OMRAN A.M. Long-term detection and hydrochemistry of groundwater resources in Egypt: Case study of Siwa Oasis. Journal of the Saudi Society of Agricultural Sciences, 15 (1), 67, 2014.
  • 48. GIBBS R. Mechanisms Controlling World Water Chemistry. Science, 170, 1088, 1970.
  • 49. DAMIANO F., MAGLIANO M.A., CASTILLO R.F. Estimation of the chemical composition of groundwater from its salinity. In National Water Congress. 25. Conagua 2015. 06, 15, 2015.
  • 50. NARVÁEZ H., BUSTAMANTE B.I., COMBATT E. Estimation of salinity in soils of river delta of Sinu in Colombia, through of linear multiple regression models. Idesia (Arica), 32 (3), 81, 2014 [In Spanish].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-db089a82-5bc4-4010-b08c-20c3705a08bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.