EN
Atrazine is a photosystem-II-inhibiting herbicide that interferes with photosynthetic electron transport, resulting in oxidative stress. Soybean (Glycine max (L.) Merrill) is an atrazine-sensitive crop, and its productivity is severely impacted by soils containing atrazine residues. Our previous study indicated that the bacteria Klebsiella pneumoniae strain SnebYK-induced resistance to atrazine in soybean, both before and after pasteurization. In order to study the molecular mechanisms of this induced resistance, proteins change in soybean leaves induced by SnebYK was investigated using two-dimensional gel electrophoresis. Differentially expressed proteins (relative to a non-induced control) were identified using MALDI-TOF MS. Differential expression patterns were detected in soybean leaves that had been induced by the bacterium. Analysis of relative expression levels indicated up-regulation of most of the mRNAs in these samples relative to the control. The corresponding proteins were observed to be involved primarily in physiological processes, including active oxygen removal, resistance signal transduction, and photosynthesis. This is the first study to conduct proteomic analysis of a soybean resistance response induced by bacteria. It is plausible that these differentially expressed proteins may interact to play a major role in defense and/or resistance responses.