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Summary

In this text we will derive estimators of unknown parameters for growth curve model
with different decrease of dependency in groups and we will compare them for the case
of two groups. We will use method of maximum likelihood and method of unbiased
estimating equations. This article is a continuation of article (Rusnacko and Zezula
2015) in which the used special correlation structure was introduced.
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1 Introduction

The growth curve model (GCM) represents connection between regression analysis
and analysis of variance and it has the following form

Y=XBZ+e, E()=0, Var(vece)=X®I, (1.1)
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where Y, ., is matrix of n p—dimensional observations, X, ,, is ANOVA matrix, B, ,
is matrix of unknown parameters, Z, ., is matrix of regression constants, €,,, 1s matrix
of random errors which has normal distribution, ,,x,, is identity matrix, >, is variance
matrix of rows of matrix Y (variance matrix of a single observation) and vec operator
transforms a matrix into a vector by stacking the columns of the matrix one underneath
the other. This model was introduced by Potthoff and Roy already in 1964. The variance
matrix contains a lot of unknown parameters, therefore it is useful to reduce their
number by considering a simpler structure. The most commonly used structures are
the uniform correlation structure and the serial correlation structure.

If the variance matrix has equal diagonal elements and equal off-diagonal elements
we talk about a uniform correlation structure, which is of the form

1 o ... o
1
Y=o [(1—o) T+ 011 =0 | ° “1 (1.2)
o o ... 1

where 02 > 0 and o € (—p%l, 1) are unknown parameters. Problem of this model can

be decreasing dependence among more remote observations in space (or time), which
is not reflected in this structure.

Serial or first order autoregressive correlation structure is natural for time series
and repeated measurements and is of the form

1 o ... ot
0 1 ... P2 o L
e L =) =0 g W+ ot (1.3)
D Lo P
i BN |

where 02 > 0 and g € (—1,1) are unknown parameters, Wy, = (w;;(k)) is p x p matrix

whose (4, j) entry
1, if|i—jl=k—1,
wij(k) = e
0, iffi—jl#k—-1
for k =2,...,p > 3. But the dependence among observations may not be exponentially
decreasing. Therefore it is useful to consider a model with slower decrease of dependency

than first-order autoregressive process.
Let us consider a correlation structure of the form

1 0aq 0ay ... 0Gp_1
0a, 1 0ay ... 0Gp_2

S=0[(1-0)+0A]=0"| 02 0m L oaps || (1.4)

00p_1 0Gp_o 0Gp_3 ... 1
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where 0% > 0 and ¢ € (—1,1) are unknown variance parameters and the matrix A is the
known symmetric Toeplitz matrix with elements (1, ay, as, . .., ap—1) . This structure can
simulate a slower decrease of dependence than exponential. Therefore it can be viewed
as a transition between the uniform and the serial correlation structure. Estimators of
unknown parameters for this special correlation structure, their statistical properties
and their comparison are derived in (Rusnatko and Zezula 2015).

In this article we extend these issues by consideration of different decrease of depen-
dency in the groups of the GCM. In the following section we will introduce this problem
and we will derive estimators of unknown parameters based on unbiased estimating
equations and the method of maximum likelihood. We will show some simulations to
compare them in the case of two groups.

2 The GCM with different decrease of dependency
in groups

Let us consider growth curve model with ¢ groups and different decrease of depen-
dency in these groups. Formally, we have model (1.1) with

Y .
¥ i / €2

Y = . s X:dlag(lnnlnza-..,lnt)u B:(ﬁla/@%--’uﬁt) , £ = : ,
Y: .

where
E (g) =0, Var (vecg;) =%;®1I,, and ¥; = o [(1 — o)I + 04j],

where Y; and g; are n; X p matrices, (§; is vector of unknown parameters corre-
sponding to i—th group, matrices A; are symmetric p X p Toeplitz matrices with el-
ements (1,ay;, az;,...,a,-1;) and each variance matrix ¥; is positive semi-definite,
1=1,2,...,t. Using the transposed model we get

I, ®3% 0 0
0 In, ®29 ... 0
A = var (vec &') = . P . : ; (2.1)
0 0 ... L,o%

so for using the method of unbiased estimating equations we estimate each diagonal
block using uniformly minimum variance unbiased invariant estimator of variance ma-
trix which is for each group in the form

1 1 1
S, = Y/My, Y; = oY (Ini——l 1/ )Y,. i=1,2,... ¢ (2.2)
% n;

n; .
n; —1 n,—1" v

In the next subsection we will derive estimators of unknown parameters based on
unbiased estimating equations and estimators (2.2).



8 Rastislav Rusnacko, Ivan Zezula

2.1 Estimators based on unbiased estimating equations

To use this method of estimating we need mean value of trace and mean value of
sum of all elements of each estimator of variance matrix (2.2). For simplicity let us
denote

t p—1
n:an and Ri:Zjap_jvi, 1=1,2,...,t.
j=1 j=1

Since estimators (2.2) are unbiased, then
E (Tr (S;)) =po® and E(1'S;1) =0 (p+20R:), i=1,2,...,t

Thus, unbiased estimating equations are

¢
ZniTr(Si) —npo? =0,
i=1

t t
Z nll/Sll — 82 an (p + 2§Rz> = O,
=1 =1

which implies that estimators of unknown parameters based on unbiased estimating
equations are of the form

t
; i L1 (S;
6_\2 — Zz:ln I‘(S) (23)
np
and . /
- np i ni1'51
b= e [ 2.4)
2 iy mili 12 niTr(Sh)

To derive properties of these estimators we use the fact that for estimators (2.2) hold
1

n; —

Var(vec S;) =

1([1)2 + Kpp)(zi ® Ei)v

which implies

2
(),

n; —
2
(1/2i1)27
i1
2

Var(Tr (S;)) = (vecl,) Var (vecS;) (vecl,) =

Var(1'S;1) = (vecJ,) Var (vecS;) (vec.,) =

Cov(1'S;1, Tr (S;)) = (vecJ,) Var (vecS;) (vecl,) = S, i=1,2,...,¢,

where J, = 1,17 and K, is the commutation matrix (see e.g. Ghazal and Neudecker
2010). As we mentioned in (Rusnacko and Zezula 2015) the following properties of each
variance matrix »; hold

Tr (Ef) ="

p—1
z]

j=1
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and
1'S21 = o'p + 40" oR; + 20 0°T;,
where
p—1 p—2p—j—1 p—2
L= i +2| 2 D kaytpri+ar Y (25 = Dapyi+
j=1 j=2 k=1 Jj=1
[51-1p—j—1
+ Z Z ajlap ki =+ 84,
i=2 k=j+1
and
2 Z] 1 ]ag_ﬂ if p is even,

§i = 1811 ) L
Z] 1 (27 —1a arey—ji if p is odd.

Now we can derive properties of estimators (2.3) and (2.4).
The estimator of parameter o2 is clearly unbiased, so its mean square error is equal
to its variance and it holds

MSE (6?) = Var (5°) = (pzn S QZ Z;ap ]Z).

But the estimator of the parameter ¢ is biased, as usually. To derive approximate
properties of this estimator we will use a Taylor expansion. Using this we can find
expansions of the mean and the variance of the ratio of two random variables in the

E(G) Cov(G,H) E(G)

form
B (9) _E© _
H) E(H) E*(H) E*(H)
G Var(G) 2E(G) E*(G)
Var | = | = — Cov(G,H)+ ——=Var(H) + Rs, 2.6
() = B ~ B N iy TR (20
where R3 is the remainder of Taylor series of 3rd order. Using these relations we get
that the mean value of estimator (2.4) is

Var(H) + Rs, (2.5)
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and its variance is

Var(9) =

The mean square error of the estimator of parameter p is

L pp—1) &~ n? 2p—2) ~—~ n?
MSE (o) = +

t
1 1 n2
+ (2R 2T+ Y jad?
Sy niRi | Yi iR (; n; — 1 < Z]
t t
8 n 2 n? |,
_n_pi T i +n—2p;ni_1lg_
t p—1
4 n?
: T jaz_. ) 0>+
t 7 i
npY i iR = ni — 1 ; P—j
4 < o2 2

202 2 o2 1~ n2
MSE /\2’/\ = 7 . — )
@02 (st - iy
t p—1
1 n?
‘l’ 7 7’!7/_ a2_ ; 2
Z:_lanl — n,—l( ;] pJ)Q
t p—1
2 n; -2 3 —2
_n_p - _123%_”@ —l—O(n )
i v j=1
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2.2 Maximum likelihood estimators

In this subsection we derive maximum likelihood estimators of unknown parameters.
Let us consider one dimensional model from transposed growth curve model in the form
y=Wp+e where y=vecY' W =X®Z, 3 =vec B, e =vece, Ee=0 and
variance matrix A of e is of the form (2.1). Its inverse and determinant are in the form

I, ® 71 0 0

0 I, @ 25t !
AL = _ 2 , and |A|= H |22;]™.
. . . . i1
0 0 oo L, %!

Let us denote X; = 0?Fj(p), for i = 1,2,...,t and

I, ® F (o) 0 0
Q- Do el
0 0 .. I, @ F (o)

Then, log-likelihood function is of the form

t
9 _onp np 9 1
U(B.0% 0,y) = = - In(2m) = - In(0%) — 3 ;mln\ﬂ(aﬂ—

2 (2.7)
— 5oaly = WHQ)y — WH).
Taking derivatives with respect to parameters 3, o2 and p we get equations
W'Q(e)W B =W'Q(0)y, (2.8)
npo® = (y = WB)Q(o)(y — Wh), (2.9)
o ZnT - 1) = - Wt iy —we. @)

From the first equation it is clear that the maximum likelihood estimator of parameter
[ is of the form

By = [W'Q(o)W] ™ W'Q(0)y. (2.11)

Inserting (2.11) into (2.9) and (2.10) produces a nonlinear system of equations for
MLEs of ¢ and o2, which we have to solve numerically. Obtained value of o is then
inserted into (2.11) to get MLE of f.

Asymptotic variances of these estimators we get from inverse of Fisher information
matrix. To get it we need second derivatives of the log-likelihood function (2.7) with
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respect to unknown parameters o2 and p. It is well known that for a random vector 7
with E(7) = p and Var(r) = =

E (7'A7) = Tr(AZ) + p'Ap. (2.12)
Using the previous formula we get

g PUB.o%0y)
8(02)2 - 20%

(B, 02, 0,y) 1 ¢ - 2
E — g - —§§niTr [F7 o) (A = D)),

a2l(570’27Q7 o
B 20-227%% 0)(4; ~1)].

Constructing the Fisher information matrix /2 ,) we get that asymptotic variances of
maximum likelihood estimators of unknown parameters are

t

1
Var (6%) = =——— > nTr [F(0)(A; — )]
2 I(2,9)| &
and np
Var (py) = ———.
20’4|](027Q)|

2.3 Comparisons and simulations for the case of two groups

Let us consider the growth curve model with two groups and different decrease of
dependency in them. In this section we compare maximum likelihood estimators with
estimators based on unbiased estimating equations on the basis of their variances for
this case. Some simulations of ratios <& 8M —1 and vargid —1 on the admissible interval

Var
of positive semi-definiteness of variance matrix for small values of time points (3-6)

and different matrices A; and As, namely we used symmetric Teoplitz matrices with
elements (1,1,4,3), (1,1,3,%), (1,1,1,3) and (1,1,1, %), are depicted in the following
pictures.
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We can see that the maximum likelihood estimator of parameter o is better than the
estimator of this parameter based on unbiased estimating equation because all values
of function v\;?rﬁi — 1 are positive. On the other hand values of function \\,/:; gﬁi — 1 are
in some cases positive and in some cases negative. However, the comparison is not too
fair, since we compare the first order approximation of small sample variance on one

side with exact asymptotic variance on the other side.
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