PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |

Tytuł artykułu

Energy demand model of the household sector and Its application in developing metropolitan cities (Case Study: Tehran)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Excessive energy consumption is one of the serious problems of large cities in Iran. In order to avoid unreasonable growth in energy use as well as conservation of natural resources, more attention should be paid to energy consumption patterns in metropolitan cities. Accordingly, the current study aims at analyzing energy demand and its related pollutants in the household sector in Tehran Metropolitan. The study includes a discussion of past trends and future scenarios to reduce greenhouse gas emissions in this sector. Using LEAP software and according to Iran's long-term development policies, energy demand and its greenhouse gas emissions were evaluated based on a baseline scenario within a long-term horizon (from 2011 to 2036). Energy demand was analyzed in the form of seven alternative scenarios. The obtained results indicated that natural gas consumption will increase to 21,084 MCM by the year 2036. In addition, the electricity consumption rate will grow to 21,084 million kWh over the studied period, if the current trend of consumption continues. The findings also revealed that maximum energy savings (equal to 23%) can be achieved by implementing Note 19 of National Building Regulations until 2036. Consequently, with implementation of this law, around 21.7% of total greenhouse gas emissions can be reduced in Tehran.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

2

Opis fizyczny

p.319-329,fig.,ref.

Twórcy

autor
  • Department of Environment and Energy, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
autor
  • Graduate Faculty of Environment, University of Tehran, P.O. Box 14155-6135, Tehran, Iran
autor
  • Department of Environment and Energy, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
  • Department of Environment and Energy, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
autor
  • Department of Environment and Energy, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
autor
  • Energy System Engineering Department, Sharif University of Technology, Tehran, Iran

Bibliografia

  • 1. ROSEN M. A. Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province. Energy Sustain. Dev., 13, (1), 43, 2009.
  • 2. EDIGER V. Ş., HOŞGÖR E., NEŞEN SÜRMELI A., TATLIDIL H. Fossil fuel sustainability index: An application of resource management. Energ. Policy, 35, (5), 2969, 2007.
  • 3. ZECCA A., CHIARI L. Fossil-fuel constraints on global warming. Energ. Policy, 38, (1), 1, 2010.
  • 4. MARTINSEN D., KREY V. Compromises in energy policy – Using fuzzy optimization in an energy systems model. Energ. Policy, 36, (8), 2983, 2008.
  • 5. THOLLANDER P., MARDAN N., KARLSSON M. Optimization as investment decision support in a Swedish medium-sized iron foundry – A move beyond traditional energy auditing. Appl. Energ., 86, (4), 433, 2009.
  • 6. TICHI S. G., ARDEHALI M. M., NAZARI M. E. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm. Energ. Policy, 38, (10), 6240, 2010.
  • 7. GROSSMANN I. E., MARTÍN M. Energy and Water Optimization in Biofuel Plants. Chinese J. Chem. Eng., 18, (6), 914, 2010.
  • 8. DIAKAKI CH., GRIGOROUDIS E., KOLOKOTSA D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energ. Buildings, 40, (9), 1747, 2008.
  • 9. KARBASSI A. R., ABDULI M. A., MAHIN ABDOLLAHZADEH E. Sustainability of energy production and use in Iran. Energ. Policy, 35, (10), 5117, 2007.
  • 10. EKONOMOU L. Greek long-term energy consumption prediction using artificial neural networks. Energy, 35, (2), 512, 2010.
  • 11. KANNAN R., STRACHAN N. Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches. Appl. Energ., 86, (4), 416, 2009.
  • 12. VASSILEVA I., ODLARE M., WALLIN F., DAHLQUIST E. The impact of consumers’ feedback preferences on domestic electricity consumption. Appl. Energ., 93, 575, 2012.
  • 13. MENYAH K., WOLDE-RUFAEL Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energ. Econ., 32, (6), 1374, 2010.
  • 14. ACARAVCI A., OZTURK I. On the relationship between energy consumption, CO₂ emissions and economic growth in Europe. Energy, 35, (12), 5412, 2010.
  • 15. HAMIT-HAGGAR M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energ. Econ., 34, (1), 358, 2012.
  • 16. GHANADAN R., KOOMEY J. G. Using energy scenario to explore alternative energy pathway in California. Energ. Policy, 33, (9), 1117, 2005.
  • 17. IGES (2005). Institute for Global Environmental Strategies. Urban environmental management challenges in Asia. Japan: IGES.
  • 18. DAGHER L., RUBLE I. Modeling Lebanon’s electricity sector: Alternative scenarios and their implications. Energy, 36, (7), 4315, 2011.
  • 19. AWAMI A., FARAHMADPOUR B. Analysis of environmental emission and greenhouse gases in Islamic Republic of Iran. Iran: International Institute for Energy Studies (IIES), 2008.
  • 20. DAVOUDPOUR H., AHADI M. S. The potential for greenhouse gases mitigation in household sector of Iran: Cases of price reform/efficiency improvement and scenario for 2000-2010. Energ. Policy, 34, (1), 40, 2004.
  • 21. SHABBIR R., AHMAD SH. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model. Energ. Policy, 35, (5), 2323, 2010.
  • 22. LEAP. User Guide of Long range Energy Alternative Planning System (LEAP), Stockholm Environment Institute, Boston, USA, 2011.
  • 23. EBS (2007). Energy Balance Sheet. Power and Energy Affairs, Ministry of Energy, Iran.
  • 24. FCOC (2010), Fuel Consumption Optimization Company, Iran.
  • 25. Energy Research (2007), Benchmarking electricity consumption in the household sector, Tehran, Iran.
  • 26. Energy Research (2007), Benchmarking electricity consumption in the household sector, Tehran, Iran.
  • 27. ALAM HOSSAIN MONDAL MD., BOIE W., DENICH M. Future demand scenarios of Bangladesh power sector. Energ. Policy, 38, (11), 7416, 2010.
  • 28. HUANG Y., JEFFREY BOR Y., PENG C.-Y. The long-term forecast of Taiwan’s energy supply and demand: LEAP model application. Energ. Policy, 39, (11), 6790, 2011.
  • 29. KADIAN R., DAHIYA R.P., GARG H.P. Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energ. Policy, 35, (12), 6195, 2007.
  • 30. SUGANTHI L., SAMUEL A. A. Energy models for demand forecasting. Renew. Sust. Energ. Rev., 16, (2), 1223, 2012.
  • 31. SHAN B., XU M., ZHU F., ZHANG CH. China's Energy Demand Scenario Analysis in 2030. Energy Procedia, 14, 1292, 2012.
  • 32. NIG Co. (2010). Household natural gas consumption pattern in Iran, National Iranian Gas Company, Tehran, Iran.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-da1bfbbf-0382-4eb9-89ee-e035540a2523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.