PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2025 | 76 | 1 |

Tytuł artykułu

Rare earth elements (REE) in wild macrofungi: A review highlighting the importance of requisite analytical methodology on data quality

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The accelerating global use of lanthanides in modern consumer goods has introduced a new source of environmental pollution and potential health hazards. Evaluating risk for human exposure to these rare earth elements (REE) is hampered by limited occurrence data in foods, partly because reliable, sensitive and accurate determination is challenging. An objective of this work was to critically review lanthanide occurrence in fruiting bodies (mushrooms) of edible wild terrestrial (epigeic) and subterranean (hypogeic) macrofungi and their soil substrates, while also assessing the reported data for analytical quality. Given the paucity of information, all available literature on lanthanides in wild mushrooms was considered. Key requirements for credible REE determination in fungal biomass include avoiding cross contamination from substrates, exclusion of spectral/non-spectral interferences through robust purification and selective, sensitive measurement procedures, inclusion of the full range of lanthanides and strict quality control. In general, both high and lower resolution ICP-MS techniques were evidentially able to provide more reliable outcomes if these requirements were followed. A second objective was to propose a rational approach to assess data reliability by combining the above methodological attributes with the characteristics of lanthanide occurrence in mushrooms: (i) adherence to Oddo-Harkins order, visualised as a descending sawtooth pattern – a result of unfractionated uptake and accumulation of lanthanides from soils and other substrates (ii) typical individual concentration ratios (e.g., La/Sm, Ce/Nd, Ce/Sm) that indicate reliable determination, (iii) bio-exclusion of lanthanides by wild fungi (bioconcentration factors < 1). Data from studies that met these requirements confirmed typically low concentrations (0.07 μg kg-1 of Lu in Suillus luteus to 940 μg kg-1 of Ce in Cantharellus minor) with patterns corresponding to Oddo-Harkins order across reported fungal types, maintaining the unfractionated REE substrate patterns. However, given the upward trend in REE usage, the continued monitoring of macrofungi is prudent.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

76

Numer

1

Opis fizyczny

p.1-9,fig.,ref.

Twórcy

autor
  • Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego St, 90-151 Lodz, Poland
  • School of Environmental Sciences, University of East Anglia, United Kingdom
  • Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
autor
  • Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Japan

Bibliografia

  • 1. Migaszewski ZM, Gałuszka A. The characteristics, occurrence, and geochemical behaviour of rare earth elements in the environment: A review. Crit Rev Environ Sci Technol. 2015;45(5):429-471. doi: 10.1080/10643389.2013.866622.
  • 2. Bau M, Schmidt K, Pack A, Bendel V, Kraemer D. The European shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl Geochem. 2018;90(1):142-149. doi: 10.1016/j.apgeochem.2018.01.008.
  • 3. Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front, 2019;10(4):1285-1303. doi: 10.1016/j.gsf.2018.12.005.
  • 4. Kwecko P. Pierwiastki ziem rzadkich (REE) w środowiskach powierzchniowych litosfery [Rare Earth Elements (REE) in surface environments of the lithosphere]. Przegl Geol. 2016;64(11):902–917.doi: 10.7306/2018.12 (in Polish).
  • 5. Golloch A. Analytics of rare earth elements – basics and methods. In: Golloch A, editor. Handbook of Rare Earth Elements – Analytics. Berlin/Boston: Walter de Gruyter GmbH; 2022. p. 5-15. doi: 10.1515/9783110696455-002.
  • 6. Voncken JHL. The Rare Earth Elements. An Introduction. SpringerBriefs in Earth Sciences. Springer International Publishing AG Switzerland; 2016. doi: 10.1007/978-3-319-26809-5.
  • 7. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, et al. FOREGS geochemical atlas of Europe, part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland; 2005. Available from: http://weppi.gtk.fi/publ/foregsatlas/.
  • 8. Zocher A-L, Kraemer D, Merschel G, Bau M. Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements. Chem Geol. 2018;483:491-500. doi: 10.1016/j.chemgeo.2018.03.019.
  • 9. Zapp P, Schreiber A, Marx J, Kuckshinrichs W. Environmental impacts of rare earth production. MRS Bull. 2022;47(9):267-275. doi: 10.1557/s43577-022-00286-6.
  • 10. Li X, Chen Z, Chen Z, Zhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 2013;93(6):1240-1246. doi: 10.1016/j.chemosphere.2013.06.085.
  • 11. Mupatsi NM, Gwenzi W. High-technology rare earth elements in the soil-plant system: occurrence, behaviour, and fate. Emerging Contaminants in the Terrestrial- Aquatic-Atmosphere Continuum: Occurrence, Health Risks and Mitigation, Amsterdam: Elsevier; 2022.p. 29-46. doi: 10.1016/B978-0-323-90051-5.00025-0.
  • 12. Falandysz J, Liu G, Rutkowska M. Analytical progress on emerging pollutants in the environment: An overview of the topics. TrAC Tr Anal Chem. 2024;175(4):117719. doi: 10.1016/j.trac.2024.117719.
  • 13. Falandysz J, Fernandes AR, Zhang J. Critical review of rare earth elements (REE) in cultivated macrofungi. Food Control, 2024;155(S1):110085. doi: 10.1016/j.foodcont.2023.110085.
  • 14. Le Jean M, Montargès-Pelletier E, Rivard C, Grosjean N, Chalot M, Vantelon D, et al. Locked up inside the vessels: Rare earth elements are transferred and stored in the conductive tissues of the accumulating fern Dryopteris erythrosora. Environ Sci Technol. 2023;57(7):2768-2778. doi: 10.1021/acs.est.2c06985.
  • 15. Pallares R. M, Li Y, Abergel R. Understanding the biological behaviour of lanthanides and actinides through omics approaches. TrAC Trends Anal Chem. 2023;167:117251. doi: 10.1016/j.trac.2023.117251.
  • 16. Kulkarni P, Chellam S, Fraser MP. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environ Sci Technol. 2007;41(19):6748-6754. doi: 10.1021/es062888i.
  • 17. Moreno T, Querol X, Alastuey A, Gibbons W. Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmosph Environ. 2008;42(34):7851-7861. doi:10.1016/j.atmosenv.2008.07.013.
  • 18. Moreno T, Querol X, Alastuey A, de la Rosa J, Sánchez de la Campa AM, Minguillón M, et al. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ. 2010;408(20):4569-4579.doi: 10.1016/j.scitotenv.2010.06.016.
  • 19. Blissett RS, Smalley N, Rowson NA. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel. 2014;119:236-239. doi: 10.1016/j.fuel.2013.11.053.
  • 20. Report on Rare Earth Elements from Coal and Coal Byproducts Report to Congress 2017. United States Department of Energy, Washington. Available from: https://www.energy.gov/fecm/articles/rare-earthelements-report-congress.
  • 21. Zhou H, Chun X, Li Ch, He J, Du D. Geochemical characteristics of rare earth elements in windowsill dust in Baotou, China: influence of the smelting industry on levels and composition. Environ Sci Pr Impacts. 2020;22(12):2398-2405. doi: 10.1039/d0em00273a.
  • 22. Kabata-Pendias A, Pendias H. Biogeochemia pierwiastków śladowych. Warszawa: Wydawnictwo Naukowe PWN; 1999. ISBN: 83-01128-23-2.
  • 23. Mędyk M, Falandysz J. Occurrence, bio-concentration and distribution of rare earth elements in wild mushrooms. Sci Total Environ. 2022;851(Pt1):158159. doi: 10.1016/j.scitotenv.2022.158159.
  • 24. Migaszewski ZM, Gałuszka A. The use of gadolinium and europium concentrations as contaminant tracers in the Nida River watershed in south-central Poland. Geol Quart. 2016;60(2):65-74. doi: 10.7306/gq.1241.
  • 25. Schmidt K, Bau M, Merschel G. Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany. Sci Total Environ. 2019;687:1401-1408. doi: 10.1016/j.scitotenv.2019.07.075.
  • 26. Wysocka IA, Rogowska AM, Kostrz-Sikora P. Investigation of anthropogenic gadolinium in tap water of polish cities: Gdańsk, Kraków, Warszawa, and Wrocław. Environ Pollut. 2023;323:121289. doi: 10.1016/j.envpol.2023.121289.
  • 27. Collin-Hansen H, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia. 2005;97(5):973-983. doi: 10.1080/15572536.2006.11832747.
  • 28. Falandysz J, Rizal LM. Arsenic and its compounds in mushrooms: A review. J Environ Sci Health Part C. 2016;34(4):217-232. doi: 10.1080/10590501.2016.1235935.
  • 29. Kalać P. Edible mushrooms. Chemical composition and nutritional value. Elsevier; 2016. ISBN: 9780128044551.
  • 30. Falandysz J. Review: On published data and methods for selenium in mushrooms. Food Chem. 2013;138(1):242-250. doi: 10.1016/j.foodchem.2012.10.046.
  • 31. Falandysz J, Zhang J, Saniewski M, Wang Y. Artificial (137Cs) and natural (40K) radioactivity and total potassium in medicinal fungi from Yunnan in China. Isotopes Environ. Health Stud. 2020;56:324-333. doi: 10.1080/10256016.2020.1741574.
  • 32. Food and Agriculture Organization Statistical. Mushrooms and truffles [Internet]. 2022 [cited 2024 Jan 20]. Available from: https://www.fao.org/faostat/en/.
  • 33. Yu F, Guerin-Laguette A, Wang Y. Edible Mushrooms and Their Cultural Importance in Yunnan, China. In: Pérez-Moreno J, Guerin-Laguette A, Flores Arzú R, Yu FQ, editors. Mushrooms, Humans and Nature in a Changing World. Cham: Springer; 2020. p. 163-204. doi: 10.1007/978-3-030-37378-8_6.
  • 34. Grzywacz A. Tradycje zbiorów grzybów leśnych w Polsce. Studia i Materiały CEPL w Rogowie. 2015;17(44/3):189-199. Available from: https://cepl.sggw.edu.pl/wp-content/uploads/sites/75/2021/08/Grzywacz_1.pdf.
  • 35. Læssoe T, Del Conte A. The mushrooms book. Practical know-how to identify, gather and cook wild mushrooms and other fungi. Dorling Kindersley Plc.; 1996. ISBN 146540855X.
  • 36. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Ziedl DC, Pardo-Giménez A, editors. Edible and medicinal mushrooms: Technology and Applications. New York: John Wiley &Sons; 2017. doi: 10.1002/9781119149446.ch2.
  • 37. Tyler G. Rare earth elements in soil and plant systems – A review. Plant and Soil, 2004;267(1):191-206. doi: 10.1007/s11104-005-4888-2.
  • 38. Pagano G. Rare earth elements in human and environmental health: at the crossroads between toxicity and safety. Singapore: Pan Stanford Publishing Pte. Ltd.; 2016. p. 1-280. doi: 10.1201/9781315364735.
  • 39. Wysocka IA, Porowski A, Rogowska AM, Kaczor-Kurzawa D. Pierwiastki ziem rzadkich (REE) w wodach powierzchniowych i podziemnych Polski na tle innych krajów Europy [Rare earth elements (REE) in surface and ground waters of Poland in comparison to other European countries]. Przegl Geol. 2018;66(11):692-705. doi: 10.7306/2018.12 (in Polish).
  • 40. Balaram V. Advances in analytical techniques and applications in exploration, mining, extraction, and metallurgical studies of rare earth elements. Minerals, 2023;13(8):1031. doi: 10.3390/min13081031.
  • 41. Cotruvo JA Jr. The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications. ACS Cent Sci. 2021;5(9):1496-1506. doi: 10.1021/acscentsci.9b00642.
  • 42. Featherston ER, Cotruvo JA Jr. The biochemistry of lanthanide acquisition, trafficking, and utilization. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118864. doi: 10.1016/j.bbamcr.2020.118864.
  • 43. Tao Y, Shen L, Feng C, Yang R, Qu J, Ju H, Zhang Y. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ Pollut. 2022;298:118540. doi: 10.1016/j.envpol.2021.118540.
  • 44. Yin X, Martineau C, Demers I, Basiliko N, Fenton NJ. The potential environmental risks associated with the development of rare earth element production in Canada. Environ Rev. 2021;29(3):354-377. doi: 10.1139/er-2020-0115.
  • 45. Brouziotis AA, Giarra A, Libralato G, Pagano G, Guida M, Trifuoggi M. Toxicity of rare earth elements: An overview on human health impact. Front Environ Sci. 2022;10:948041. doi: 10.3389/fenvs.2022.948041.
  • 46. Qvarforth A, Lundgren M, Rodushkin I, Engström E, Paulukat C, Hough RL, et al. Future food contaminants: An assessment of the plant uptake of Technology-critical elements versus traditional metal contaminants. Environ Int. 2022;169:107504. doi: 10.1016/j.envint.2022.107504.
  • 47. Falandysz J. Lanthanides in macrofungi – Comment on “Mleczek, M., Rzymski, P., Budka, A., Siwulski, M., Jasińska, A., Kalać, P., Poniedziałek, B., Gąsecka, M., Niedzielski, P., 2018. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 66, 168–178”. JFood Compos Anal. 2023; 116(7a):104994. doi: 10.1016/j.jfca.2022.104994.
  • 48. Falandysz J. Letter to the editor: Comment on “multiannual monitoring (1974-2019) of rare earth elements in wild growing edible mushroom species in Polish forests” by Siwulski et al. https://doi.org/10.1016/j.chemosphere.2020.127173. A recurring question - What are the real concentrations and patterns of REE in mushrooms? Chemosphere. 2023;312(Pt 1):137219. doi: 10.1016/j.chemosphere.2022.137219.
  • 49. Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, et al. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam. 2001;18(6):503-513. doi: 10.1080/02652030119625.
  • 50. Stijve T, Andrey D, Lucchini GF, Goessler W. Simultaneous uptake of rare earth elements, aluminium, iron, and calcium by various macromycetes. Australasian Mycol. 2001;20(2):92-98.
  • 51. Stijve T, Andrey D, Lucchini G. F, Goessler W. Lanthanides and other less common metals in mushrooms. Deutsch Lebensm Rund. 2002;98(3):82-87.
  • 52. Řanda Z, Kučera J. Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nuclear Chem. 2004;259(1):99-107. doi: 10.1023/B:JRNC.0000015813.27926.32.
  • 53. Stijve T, Goessler W, Dupuy G. Influence of soil particles on concentrations of aluminium, iron, calcium and other metals in mushrooms. Deutsch Lebensm Rund. 2004;100(1):10-13.
  • 54. Tyler G. Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. Forest Ecol Manage. 2005;206(1-3):167–177. doi: 10.1016/j.foreco.2004.10.065.
  • 55. Campos JA, Tejera NA, Sánchez CJ. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals. 2009;22(5):835–841. doi: 10.1007/s10534-009-9230-7.
  • 56. Borovička J, Kubrová J, Rohovec J, Řanda Z, Dunn CE. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals. 2011;24(5):837-845. doi: 10.1007/s10534-011-9435-4.
  • 57. Campos JA, De Toro JA, Pérez de los Reyes C, Amorós JA, Garcia-Moreno R. Lifestyle influence on the content of copper, zinc and rubidium in wild mushrooms. Appl Environ Soil Sci. 2012;6:687160. doi:10.1155/2012/687160.
  • 58. Mleczek M, Niedzielski P, Kalač P, Siwulski M, Rzymski P, Gąsecka M. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33(1):86-94. doi: 10.1080/19440049.2015.1114684.
  • 59. Falandysz J, Sapkota A, Mędyk M, Feng X. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem. 2017;221:24-28. doi: 10.1016/j.foodchem.2016.10.047.
  • 60. Rossbach M, Stieghorst C, Polkowska‑Motrenko H, Chajduk E, Samczyński Z, Pyszyńska M, et al. Elemental analysis of summer truffles Tuber aestivum from Germany. J Radioanal Nuclear Chem. 2019;320(2):475-483. doi: 10.1007/s10967-019-06485-x.
  • 61. Vukojević V, Đurđić S, Stefanović V, Trifković J, Čakmak D, Perović V, et al. Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer. Environ Sci Pollut Res Int. 2019;26(6):5422-5434. doi: 10.1007/s11356-018-3982-y.
  • 62. Segelke T, von Wuthenau K, Neitzke G, Müller M-S, Fischer M. Food authentication: species and origin determination of truffles (Tuber spp.) by inductively coupled plasma mass spectrometry and chemometrics. J Agric Food Chem. 2020;68(49):14374-14385. doi: 10.1021/acs.jafc.0c02334.
  • 63. Ivanić M, Turk M. F, Tkalčec, Z, Fiket Ž, Mešić A. Distribution and origin of major, trace and rare earth elements in wild edible mushrooms: urban vs. forest areas. J Fungi (Basel). 2021;7(12):1068. doi: 10.3390/jof7121068.
  • 64. Falandysz J. Comment on „Mineral composition of traditional and organic-cultivated mushroom Lentinula edodes in Europe and Asia – Similar or different?” – are the data on lanthanides correct? LWT – Food Sci Technol. 2022;171(3):114101. doi: 10.1016/j.lwt.2022.114101.
  • 65. Falandysz J. Comment on: „Family and species as determinants modulating mineral composition of selected wild-growing mushroom species” by Mleczek et al., https://doi: 10.1007/s11356-020-10508-6. Environ Sci Pollut Res. 2022;29(59):89796–89800. doi: 10.1007/s11356-022-23759-2.
  • 66. Falandysz J. Letter to the Editor - comment on: “Anthropogenic contamination leads to changes in mineral composition of soil- and tree-growing mushroom species: A case study of urban vs. rural environments and dietary implications” – rare earth elements. Sci Total Environ. 2023;858(Pt 1):159484. doi: 10.1016/j.scitotenv.2022.159484.
  • 67. Falandysz J. Comment on: “Family and species as determinants modulating mineral composition of selected wild-growing mushroom species” by Mleczek et al., https://doi: 10.1007/s11356-020-10508-6. Environ Sci Pollut Res Int. 2022;29(59):89796-89800. doi:10.1007/s11356-022-23759-2.
  • 68. Mędyk M, Falandysz J, Nnorom IC. Scandium, yttrium, and lanthanide occurrence in Cantharellus cibarius and C. minor mushrooms. Environ Sci Pollut Res. 2023;30(14):41473–41484. doi: 10.1007/s11356-023-25210-6.
  • 69. Falandysz J. Comment on “Screening the Multi- Element Content of Pleurotus Mushroom Species Using inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES)”. Food Anal Method. 2023;16(7a):596-603. doi: 10.1007/s12161-022-02440-x.
  • 70. Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol. 2024;108(1):268. doi: 10.1007/s00253-024-13087-5.
  • 71. Gulino F, Calà E, Garruto L, Toso C, Lingua G, Cesaro P, et al. On the traceability of truffles by means of the lanthanides distribution. J Food Compos Anal. 2025;139(20):107068. doi: 10.1016/j.jfca.2024.107068.
  • 72. Taylor SR, McLennan SM. The continental crust: Its composition and evolution. Oxford: Blackwell Scientific; 1985. doi: 10.1002/gj.3350210116.
  • 73. Dołęgowska S, Migaszewski ZM. Anomalous concentrations of rare earth elements in the moss-soil system from south-central Poland. Environ Pollut. 2013;178(1):33-40. doi: 10.1016/j.envpol.2013.02.024.
  • 74. Angelone M, Spaziani F, Cremisini C, Salluzzo A. Determination of PGE and REE in urban matrices and fingerprinting of traffic emission contamination. In: Morrison G., Rauch S, editors. Highway and Urban Environment. Alliance for Global Sustainability Book series, vol. 12. Dordrecht: Springer; 2007. p. 271-281. doi: 10.1007/978-1-4020-6010-6_25.
  • 75. Zhang Q, Chen Z, Chen Z, Pan Z, Feng L. The chronological changes of rare earth element content in Pinus massoniana annual rings in rare earth mining area, Southern China. Chinese Rare Earths. 2019;40(6):66-73.
  • 76. Tagami K, Uchida S, Kikuchi H, Kogure N. Measurement of the transfer factor of rare earth elements from paddy soil to brown rice and distribution in rice grain using ICP-MS. Bunseki Kagaku, 2018;67(7):405-411. doi: 10.2116/bunsekikagaku.67.405.
  • 77. Haskin MA, Haskin LA. Rare earths in European shales: a redetermination. Science, 1966;154(3748):507–509. doi: 10.1126/science.154.3748.507.
  • 78. Koutrotsios G, Danezis GP, Georgiou CA, Zervakis GI. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclocybe cylindracea. J Sci Food Agric. 2018;98(14):5418-5427. doi: 10.1002/jsfa.9085.
  • 79. Ichihashi H, Morita H, Tatsukawa R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ Pollut. 1992;76:157-162. doi: 10.1016/0269-7491(92)90103-h.
  • 80. Nilsson LO, Bååth E, Falkengren-Grerup U, Wallander H. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia, 2007;153(2):375-84. doi: 10.1007/s00442-007-0735-x.
  • 81. Zaharescu DG, Burghelea CI, Dontsova K, Presler JK, Maier RM, Huxman T, et al. Ecosystem composition controls the fate of rare earth elements during incipient soil genesis. Sci Rep. 2017;7:43208. doi: doi: 10.1038/srep43208.
  • 82. Lisiak-Zielińska M, Borowiak K, Budka A, Cakaj A, Hanć A, et al. Rare earth elements and landscape: Is there a relationship between them? – New evidence from Poland (Eastern Europe). Ecol Indic.2024;159(6):111642. doi: 10.1016/j.ecolind.2024.111642.
  • 83. Rojano WJS, dos Anjos T, Duyck CD, Saint’Pierre TD. Determination of rare earth elements in environmental samples with high concentrations of barium by quadrupole inductively coupled plasma mass spectrometry. Microchem J. 2019;149(207):104026. doi: 10.1016/j.microc.2019.104026.
  • 84. Pourret O, van der Ent A, Hursthouse A, Irawan DE, Liu H, Wiche O. The ‘europium anomaly’ in plants: facts and fiction. Plant Soil. 2022;476:721–728. doi: 10.1007/s11104-021-05210-6.
  • 85. RSC. Cerium. 2024. Available form: https://www.rsc.org/periodic-table/element/58/cerium.
  • 86. Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K. Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng. 2011;111(5):547-549. doi:10.1016/j.jbiosc.2010.12.017.
  • 87. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. 2014;16(1):255-264. doi: 10.1111/1462-2920.12249.
  • 88. Picone N, Op den Camp HJ. Role of rare earth elements in methanol oxidation. Curr Opin Chem Biol. 2019;49:39-44. doi: 10.1016/j.cbpa.2018.09.019.
  • 89. Sun G, Li Z, Liu T, Chen J, Wu T, Fen X. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environ Geochem Health. 2017;39(6):1469-1486. doi: 10.1007/ s10653-017-9982-x.
  • 90. Zbinden P, Andrey D. Determination of trace element contaminants in food matrices using a robust, routine analytical method for ICP-MS. Atom Spectr. 1998;19(6):214-219. doi: 10.46770/AS.1998.06.006.
  • 91. Karkocha I, Młodecki H. Badania nad wartością odżywczą niektórych grzybów krajowych. Część III. Zawartość substancji ważnych dla żywienia w borowiku szlachetnym; pieczarce dwuzarodnikowej, pieprzniku jadalnym i piestrzenicy jadalnej [Nutritive value of some mushrooms grown in Polish forest Boletus edulis, Agaricus bisporus, Cantharellus cibarius, Gyomitra esculenta]. Roczn Panstw Zakl Hig. 1965;16(1):71-76 (in Polish).
  • 92. Cocchi L, Petrini OL, Vescovi L. Metalli pesanti e isotopi radioattivi nei funghi: aspetti igienico – Sanitari. Atti del 2” Convegno lnter nazionale diMicotossicologia Viterbo, 6-7 dicembre. Pagine diMicologia. 2002;17(10):73-91.
  • 93. Gadd GM. The geomycology of elemental cycling and transformations in the environment. Microbiol Spectr. 2017;5(1):FUNK-0010-2016. doi: 10.1128/ microbiolspec.FUNK-0010-2016.
  • 94. Saran R. Chapter 7: Determination of Trace Elements Using X-ray Fluorescence (XRF) Wavelength Dispersive (WD) and Energy Dispersive (ED). Analytical Techniques for Trace Elements in Geochemical Exploration. In: Saran R, editor. Royal Society of Chemistry; 2022. doi: 10.1039/9781839166518-00181.
  • 95. Stosch H-G. Neutron activation analysis of the rare earth elements. In: Golloch A, editor. Handbook of Rare Earth Elements – Analytics. Berlin/Boston: Walter de Gruyter GmbH; 2022. p. 313-345. doi: 10.1515/psr-2016- 0062.
  • 96. Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev. 2019;40(3):115-133. doi: 10.33176/AACB-19-00024.
  • 97. El-Khatib AH, Telgmann L, Lindner U, Lingott J, Jakubowski N. Analysis and speciation of lanthanoids by ICP-MS. In: Golloch A, editor. Handbook of Rare Earth Elements – Analytics. Berlin/Boston: Walter de Gruyter GmbH; 2022. p. 141-160. doi: 10.1515/9783110696455-005.
  • 98. Dulski P. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. Geostandards Newsletter, 2001;25:87-125. doi: 10.1111/j.1751-908X.2001.tb00790.x.
  • 99. Liu Y, Xue D, Li W, Li C. The determination of ultratrace rare-earth elements in iron minerals via HR-ICPMS following chemical purification by polyurethane foam. J Anal At Spectrom. 2020;35(10):2156-2164. doi:0.1039/D0JA00119H.
  • 100. Falandysz J, Nnorom IC, Mędyk M. Rare earth elements in Boletus edulis (King Bolete) mushrooms from lowland and montane areas in Poland. Int J Environ Res Public Health. 2022;19(15):8948. doi: 10.3390/ijerph19158948.
  • 101. Piatti D, Marconi R, Caprioli G, Zannotti M, Giovannetti R, Sagratini G. White Acqualagna truffle (Tuber magnatum Pico): Evaluation of volatile and non-volatile profiles by GC-MS, sensory analyses and elemental composition by ICP-MS. Food Chem. 2024;439:138089. doi: 10.1016/j.foodchem.2023.138089.
  • 102. Prohaska T, Irrgeher J, Zitek A, Jakubowski N. Sector Field Mass Spectrometry for Elemental and Isotopic Analysis. Cambridge: Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road; 2014. doi: 10.1039/9781849735407.
  • 103. Mleczek M, Budka A, Siwulski M, Budzyńska S, Kalač P, Karolewski Z, et al. Anthropogenic contamination leads to changes in mineral composition of soil- and tree-growing mushroom species: A case study of urban vs. rural environments and dietary implications. Sci Total Environ. 2022;809:151162. doi: 10.1016/j.scitotenv.2022.159653.
  • 104. Bulska E, Ruszczyńska A. Analytical techniques for trace element determination. Phys Sci Rev. 2017;2(5):20178002. doi: 10.1515/psr-2017-8002.
  • 105. Dulski P. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem. 1994;350:194-203. doi: 10.1007/BF00322470.
  • 106. Figueiredo AMG, Camargo SP, Sígolo JB. Determination of REE in urban park soils from São Paulo city for fingerprint of traffic emission contamination. In: International Nuclear Atlantic Conference, 2009, Rio de Janeiro. Annals Rio de Janeiro: Comissão Nacional de Energia Nuclear; 2009. Available from: https://www.ipen.br/biblioteca/2009/inac/15065.pdf.
  • 107. Long KR, Van Gosen BS, Foley NK, Cordier D. The principal rare earth elements deposits of the United States: a summary of domestic deposits and a global perspective. In: Sinding-Larsen R, Wellmer FW, editors. Non-Renewable Resource Issues. International Year of Planet Earth. Dordrecht: Springer; 2012. p. 131-155. doi: 10.1007/978-90-481-8679-2_7.
  • 108. Kramer KJ, Dorten WS, van het Groenewoud H, de Haan E, Kramer GN, Monteiro L, et al. Collaborative study to improve the quality control of rare earth element determinations in environmental matrices. J Environ Monit. 1999;1(1):83-89. doi: 10.1039/a807381c.
  • 109. Drewnowska M, Falandysz J. Investigation on minerals composition and accumulation by popular edible mushroom Common Chanterelle (Cantharellus cibarius). Ecotoxicol Environ Saf. 2015;113(1):9-17. doi: 10.1016/j.ecoenv.2014.11.028.
  • 110. Falandysz J, Frankowska A, Jarzyńska G, Dryżałowska A, Kojta A K, Zhang D. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J Environ Sci Health B. 2011;46(3):231-46. doi: 10.1080/03601234.2011.540528.
  • 111. Falandysz J, Fernandes AR. A critical review of the occurrence of scandium and yttrium in mushrooms. Adv Appl Microbiol. 2023;125:107-141. doi: 10.1016/bs.aambs.2023.08.003.
  • 112. Squadrone S, Brizio P, Stella C, Mantia M, Battuello M, Nurra N, et al. Rare earth elements in marine and terrestrial matrices of Northwestern Italy: Implications for food safety and human health. Sci Total Environ. 2019;660:1383-1391. doi: 10.1016/j.scitotenv.2019.01.112.
  • 113. Pošćić F, Žanetić M, Fiket Ž, Furdek Turk M, Mikac N, Bačić N, et al. Accumulation and partitioning of rare earth elements in olive trees and extra virgin olive oil from Adriatic coastal region. Plant Soil. 2020;448(7):133-151. doi: 10.1007/s11104-019-04418-x.
  • 114. Squadrone S, Nurra N, Battuello M, Mussat Sartor R, Stella C, Brizio P, et al. Trace elements, rare earth elements and inorganic arsenic in seaweeds from Giglio Island (Thyrrenian Sea) after the Costa Concordia shipwreck and removal. Mar Pollut Bull. 2018;133:88-95. doi: 10.1016/j.marpolbul.2018.05.028.
  • 115. Squadrone S, Brizio P, Battuello M, Nurra N, Mussat Sartor R, Benedetto A, et al. A first report of rare earth elements in northwestern Mediterranean seaweeds. Mar Poll Bull. 2017;122(1-2):236-242. doi: 10.1016/j.marpolbul.2017.06.048.
  • 116. Rodushkin I, McSheehy S, Hamester M. Magnet or Cell? A Comparison of High-Resolution Sector Field ICP-MS and Collision–Reaction Cell Quadrupole ICPMS. LCGC Supplements. 2009;7(4):26-29.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-da0fc636-7d62-4ca1-b2dd-fd9267b79813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.