PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 18 | 3 |

Tytuł artykułu

Multi-objective optimization of high speed vehicle-passenger catamaran by genetic algorithm. Part II. Computational simulations

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Real ship structural design problems are usually characterized by presence of many conflicting objectives. Simultaneously, a complete definition of the optimum structural design requires a formulation of size-topology-shape-material optimization task unifying the optimization problems of the four areas and giving an effective solution of the problem. So far, a significant progress towards the solution of the problem has not been obtained. An objective of the present paper was to develop an evolutionary algorithm for multiobjective optimization of structural elements of large spatial sections of ships. Selected elements of the multi-criteria optimization theory have been presented in detail. Methods for solution of the multi-criteria optimization problems have been discussed with the focus on the evolutionary optimization algorithms. In the paper an evolutionary algorithm where selection takes place based on the aggregated objective function combined with domination attributes as well as distance to the asymptotic solution, is proposed and applied to solve the problem of optimizing structural elements with respect to their weight and surface area on a high speed vehicle-passenger catamaran structure, with several design variables, such as plate thickness, scantlings of longitudinal stiffeners and transverse frames, and spacing between longitudinal and transversal members, taken into account. Details of the computational models were at the level typical for conceptual design. Scantlings were analyzed by using selected rules of a classification society. The results of numerical experiments with the use of the developed algorithm, are presented. They show that the proposed genetic algorithm can be an efficient tool for multi-objective optimization of ship structures. The paper is published in three parts: Part I: Theoretical background on evolutionary multi-objective optimization, Part II: Computational investigations, and Part III: Analysis of the results

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

3

Opis fizyczny

p.3-30,fig.,ref.

Twórcy

autor
  • Faculty of Marine Technology, West Pomeranian University of Technology in Szczecin, Al.Piastow 41, 71-065 Szczecin, Poland

Bibliografia

  • 1. Abraham, A., Jain, L. and Goldberg, R., 2005. Evolutionary Multiobjective Optimization. Springer.
  • 2. Back, T., 1996. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York.
  • 3. Binh, T.T. and Korn, U., 1997. MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. In: The Third International Conference on Genetic Algorithms (Mendel 97), 25-27 June 1997, Brno, Czech Republic, 176-182.
  • 4. Darwin, Ch., 1859. Origin of Species. John Murray, London.
  • 5. Coello Coello, C.A., Lamont, G.B. and Veldhuizen, D.A., 2007. Evolutionary Algorithms for Solving Multi-objective Problems. Springer.
  • 6. Cohon, J.L., 1978. Multiobjective Programming and Planning. New York, Academic Press.
  • 7. Coley, D.A., 1999. An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific, Singapore.
  • 8. Das, P.K., 1993. Reliability – Based Design Procedure of Stiffened Cylinder Using Multiple Criteria Optimisation Techniques. In: Proceedings of Offshore Technology Conference, OTC 1993, Vol. 3, No. 7236, 297-313.
  • 9. Das, P.K., Tolikas, C., Morandi, A.C., Zanic, V. and Warren, N.F., 1993. Multiple Criteria Synthesis Technique Applied to the Reliabilty Based Structural Design of Hull Components of A Fast Swath Ship. In: Proceedings of Second International Conference on Fast Sea Transportation, FAST ‘93, Japan, Tokyo, Vol. 1, 473-487.
  • 10. Davis, L. 1991. Handbook of Genetic Algorithms. New York: Van Nostrand.
  • 11. De Jong, K., 1995. On Decentralizing Selection Algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, 15-19 July 1995, Pittsburgh, PA, USA, Morgan Kaufmann Publishers, San Francisco, 17-23.
  • 12. Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons.
  • 13. Deb, K., Agrawal, S., Pratab, A. and Meyarivan, T., 2000. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGA-II. KanGAL Report 200001, Indian Institute of Technology, Kanpur, India.
  • 14. Edgeworth, F.Y., 1881. Mathematical Physics: An Essay on the Application of Mathematics to the Moral Sciences. Paul Keagan, London, England.
  • 15. Eschenauer, H., Koski, J. and Osyczka, A., 1990. Multicriteria Design Optimisation. Berlin: Springer-Verlag, Berlin.
  • 16. Fonseca, C.M. and Fleming, P.J., 1993. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: 5th International Conference on Genetic Algorithms, Proceedings, 416-423.
  • 17. Fonseca, C.M. and Fleming, P.J., 1996. On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers. In: Parallel Problem Solving from Nature – PPSN IV, September 1996, Berlin, Germany, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 585-593.
  • 18. Fonseca, C.M., Knowles, J.D., Thiele, L. and Zitzler, E., 2005. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Invited talk. In: Evolutionary MultiCriterion Optimization Conference (EMO 2005), 9-11 March 2005, Guanajuato, Mexico, Lecture Notes in Computer Science 3410, Springer 2005,
  • 19. Fox, R.L., 1971. Optimization Methods for Engineering Design. Addison-Wesley Publishing Company, Inc., Reading.
  • 20. Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
  • 21. Goldberg, D.E. and Deb K., 1991. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Foundations of Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, 69-93.
  • 22. Hajela, P. and Lin, C.Y., 1992. Genetic Search Strategies in Multicriterion Optimal Design. Structural Optimization, 4: 99107.
  • 23. HANSA, 1997. Polish fast ferry “Boomerang”. 6:26-29.
  • 24. Hansen, M.P. and Jaszkiewicz, A., 1998. Evaluating the quality of approximations of the non-dominated set. Technical report, Institute of Mathematical Modeling, Technical University of Denmark, IMM Technical Report IMM-REP-1998-7.
  • 25. Horn, J., Nafpliotis, N. and Goldberg, D.E., 1994. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1: 82-87.
  • 26. Hughes, E.J., 2003. Multiple Single Objective Sampling. In: Proceedings of 2003 Congress on Evolutionary Computation, CEC 2003, 8 - 12 December 2003, Canberra, Australia, 26782684.
  • 27. Hughes, E.J., 2005. Evolutionary Many-objective Optimization: Many Once or One Many? In: Proceedings of 2005 Congress of Evolutionary Computation, CEC 2005, 2-4 September 2005, Edinbourgh, Scotland, UK, IEEE Press, 222-227.
  • 28. Hutchinson, K., Todd, D. and Sen, P., 1998. An evolutionary multiple objective strategy for the optimisation of made-toorder products with special reference to the conceptual design of high speed mono hull roll-on/roll-off passenger ferries. In: Proceedings of International Conference of Royal Institution of Naval Architects.
  • 29. Ishibuchi, H. and Murata, T., 1996. Multi-objective genetic local search algorithm. In: Proceedings of IEEE International Conference on Evolutionary Computation (ICEC’96), Piscataway, NJ, IEEE Press, 119-124.
  • 30. Jang, C.D. and Shin, S.H., 1997. A Study on the Optimal Structural Design for Oil Tankers Using Multi Objective Optimization. In: Proceedings of 6th International Marine Design Conference, IMDC’97, Newcastle, 23-25 June 1997, University of Newcastle, United Kingdom, Vol. 1, Penshaw Press, 217-231.
  • 31. Jaszkiewicz, A., 2004. On the Computational Efficiency of Multiple Objective Metaheuristics: The Knapsack Problem Case Study. European Journal of Operational Research, 158:418-433.
  • 32. Jianguo. W. and Zuoshui. X., 1996. Symmetric Solution of Fuzzy Multi-Objective Optimization for Ship Structure. Journal East China Shipbuilding Institute, 10(1): 1-7.
  • 33. Kitamura, M., Nobukawa, H. and Yang, F., 2000. Application of a genetic algorithm to the optimal structural design of a ship’s engine room taking dynamic constraints into consideration. Journal of Marine Science and Technology, Vol. 5, 131-146.
  • 34. Klanac, A., Ehlers, S. and Jelovica, J., 2009. Optimization of crashworthy marine structures. Marine Structures, Vol. 22, 670690.
  • 35. Knowles, J. and Corne. D., 1999. The Pareto Archived Evolution Strategy: a New Baseline Algorithm for Multiobjective Optimisation. In: 1999 Congress on Evolutionary Computation, CEC99, Washington, D.C., 6-9 July 1999, IEEE Service Center, 98-105.
  • 36. Knowles, J.D., Thiele, L. and Zitzler, E., 2006. A tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland, TIK-Report No. 214.
  • 37. Kursawe, F., 1991. A variant of evolution strategies for vector optimization. In: Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN I), 1-3 October 1990, Dortmund, Berlin, Springer-Verlag, 1991, 193–197.
  • 38. Leyland, G., 2002. Multi-objective Optimization Applied to Industrial Energy Problems. PhD Thesis, École Polytechnique Fédérale de Lausanne.
  • 39. Man, K.F., Tang, K.S. and Kwong, S., 1999. Genetic Algorithms. Springer-Verlag, London.
  • 40. Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs. Berlin-Heidelberg: Springer-Verlag.
  • 41. Murata, T. and Ishibuchi, H., 1995. MOGA: Multi-objective genetic algorithms. In: Proceedings of the Second IEEE International Conference on Evolutionary Computation, 289-294. In Proceedings of the Second IEEE International Conference on Evolutionary Computation, IEEE Press, 289-294.
  • 42. Okada, T. and Neki, I., 1992. Utilization of Genetic Algorithm for Optimizing the Design of Ship Hull Structure. Journal of the Society of Naval Architect of Japan, 171: 71-83.
  • 43. Osyczka, A., 2002. Evolutionary Algorithms for Single and Multicriteria Design Optimization. Heidelberg: Physica-Verlag.
  • 44. Pareto, V., 1896. Cours D’Economie Politique, Volume 1. Lausanne: F. Rouge.
  • 45. Parsons, M.G. and Singer, D., 2000. A Fuzzy Logic Agent for Design Team Communications and Negotiations. In: Conference on Computer Applications and Information Technology in the Maritime Industries, COMPIT 2000, March 2000, Potsdam/ Berlin.
  • 46. Purshouse, R.C. and Fleming, P.J., 2003. Evolutionary Many-Objective Optimization: An Exploratory Analysis. In: Proceedings of 2003 Congress on Evolutionary Computation, CEC2003, 8-12 Dec 2003, Canberra, Australia, IEEE, Piscataway, N.J., USA, 2066-2073.
  • 47. Ray, T. and Sha, O.P., 1994. Multicriteria Optimisation Model for a Containership Design. Marine Technology, 31(4): 258-268
  • 48. Reklaitis, G.V., Ravindran, A. and Ragsdell, K.M., 1983. Engineering Optimization. Methods and Applications. New York: John Wiley and Sons, New York.
  • 49. Ryan, D.M., 1974. Penalty and Barrier Functions. In: P.E. Gill and W. Murray (Eds.) Numerical Methods for Constrained Optimization, Academy Press, London.
  • 50. Sarker, R. and Coello Coello, C.A., 2002. Evolutionary Optimization, Chapter 7, Assessment methodologies for multiobjective evolutionary algorithms. In: R. Sarker, M. Mohammadian, X. Yao (Editors) Evolutionary Optimization, Academic Publishers, Boston, 177-195.
  • 51. Sarker, R., Mohammadian, M. and Yao, X., (Eds.), 2002. Evolutionary Optimization, Part III, Multi-objective Optimization. Boston: Kluwer Academic Publishers.
  • 52. Schaffer, J.D., 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, 24-26 July 1985, Carnegie-Mellon University, Pittsburgh, Pa, 93-100.
  • 53. Sekulski, Z., 2010. Multi-objective topology and size optimization of high-speed vehicle-passenger catamaran structure by genetic algorithm. Marine Structures, Vol. 23, 405433.
  • 54. Sen, P. and Yang, J.B., 1995. An Investigation Into the Influence of Preference Modelling in Ship Design with Multiple Objectives. In: Proceedings, PRADS ‘95, Vol. 2, Society of Naval Architecture of Korea, 1252-1263.
  • 55. Sen, P. and Yang, J.B., 1998. Multiple Criteria Decision Support in Engineering. London: Springer-Verlag.
  • 56. Shi, W.B., 1992. In-Service Assessment of Ship Structures: Effect of General Corrosion on Ultimate Strength. In: Spring Meteting, RINA.
  • 57. Significant Ships, 1997. Boomerang: catamaran ferry for Baltic Service, 21-21.
  • 58. Srinivas, N. and Deb, K., 1995. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3): 221-248.
  • 59. Stadler, W., 1988. Multiobjective Optimization in Engineering and in the Sciences. New York: Plenum Press.
  • 60. Statnikov, R.B. and Matosov, J.B., 1995. Multicriteria Optimization and Engineering. New York: Chapman&Hall.
  • 61. Trincas, G., Zanic, V. and Grubisic, I., 1994. Comprehensive Concept Design of Fast RO-RO Ships by Multi-Atribute Decision-Making. In: Proceedings, IMDC ‘94, Delft, 403-417.
  • 62. UNITAS, 1995. Rules for the Construction and Classification of High Speed Craft.
  • 63. Vanderplaats, G.N., 1984. Numerical Optimization Techniques for Engineering Designs. New York: McGraw-Hill.
  • 64. Veldhuizen Van, D.A., 1999. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph. D. thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.
  • 65. Veldhuizen Van, D.A. and Lamont, G.B., 2000. On measuring multiobjective evolutionary algorithm performance. In: A. Zazala, R. Eberhart (Eds.) Congress on Evolutionary Computation (CEC 2000), vol. 1, Piscataway, NY, IEEE Press, 204-211.
  • 66. Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Disertation for degree of Doctor of Technical Sciences, Swiss Federal Institute of Technology Zurych.
  • 67. Zitzler, E., Deb, K. and Thiele, L., 1999. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. TIK-Report, No. 70, Computer Engineering and Communication Networks Lab, Swiss Federal Institute of Technology, Zurych, Switzerland.
  • 68. Zitzler, E., Deb, K. and Thiele, L., 2000. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2): 173–195.
  • 69. Zitzler, E., Laumanns, M. and Bleuler, S., 2002. A tutorial on evolutionary multiobjective optimization. In Workshop on multiple objective metaheuristics (MOMH 2002), SpringerVerlag, Berlin.
  • 70. Zitzler, E., Laumanns, M. and Thiele, L., 2001. SPEA-2: Improving the Strength Pareto Evolutionary Algorithm. Evolutionary Methods for Design. In: Proceedings of the EUROGEN’2001 Conference on Optimization and Control with Applications to Industrial Problems, 19-21 September 2001, International Center for Numerical Methods in Engineering, Greece, p. 95-100.
  • 71. Zitzler, E. and Thiele, L., 1998. Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Parallel Problem Solving from Nature – PPSN, Amsterdam, 292-301.
  • 72. Zitzler, E. and Thiele, L., 1998. Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Proceedings of the PPSN V - Fifth International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27-30 September 1998, Springer, Berlin, Germany, 292-301.
  • 73. Zitzler, E. and Thiele, L., 1999. Multiobjective Evolutionary Algorithms: A Comparative Case Study and Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4): 257-271.
  • 74. Zitzler, E. and Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca V., 2002. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. TIK-Report No. 139, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland.
  • 75. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and Grunert da Fonseca V., 2003. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2):117-132.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d99ec082-aeb3-41bd-acf5-168c8eca2685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.