PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Biomass structure and morphometric parameters for non-destructive biomass estimation of common forest underbrush species in Lithuania

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A study was conducted to construct functions for aboveground biomass of different components (leaves, stems, and branches) of hazel (Corylus avellana L.), rowan (Sorbus aucuparia L.), and alder buckthorn (Frangula alnus L.) growing naturally under the stand canopy. The functions were designed to calculate the potential amount of biofuel produced from underbrush species in Lithuanian forests. Biomass production of common underbrush species was estimated in seven stands located in in southwestern Lithuania. The ages of the stands varied from 55-70 to 80-100 years. The biomass relationships with morphometric parameters were determined, including stem diameter at 1.3 m and 0.3 m above ground level, stem height, and crown length. The study findings showed that biomass relationships for underbrush species were not comparable to the same relationships for canopy trees. As the biomass changes for canopy trees are mostly caused by competition, and the growth of underbrush species depends more on the light regime. Therefore, stem diameter (D) rather than stem height (H) should be better used for estimating total aboveground biomass of underbrush.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.325-333,fig.,ref.

Twórcy

autor
  • Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu str. 1, Girionys, LT-53101, Kaunas District, Lithuania
autor
  • Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu str. 1, Girionys, LT-53101, Kaunas District, Lithuania
  • Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu str. 1, Girionys, LT-53101, Kaunas District, Lithuania
autor
  • Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu str. 1, Girionys, LT-53101, Kaunas District, Lithuania
  • Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu str. 1, Girionys, LT-53101, Kaunas District, Lithuania

Bibliografia

  • 1. LANG M., LILLELEHT A., NEUMANN M., BRONISZ K., ROLIM S.G., SEEDRE M., URI V., KIVISTE A. Estimation of above-ground biomass in forest stands from regression on their basal area and height. Forestry Studies / Metsanduslikud Uurimused. 64, 70, 2016.
  • 2. PASALODOS-T ATO M., RUIZ-PEINADO R., DEL RÍO M., MONTERO G. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur J For Res. 134 (3), 537, 2015.
  • 3. ALÍAS J.C., GARCÍA M., SOSA T., VALARES C., CHAVES N. Carbon storage in the different compartments of two systems of shrubs of the southwestern Iberian Peninsula. Agroforest Syst. 89 (4), 575, 2015.
  • 4. RYTTER L., INGERSLEV M., KILPELÄINEN A., TORSSONEN P., LAZDINA D., LÖF M., MADSEN P., MUISTE P., STENER L.-G. Increased forest biomass production in the Nordic and Baltic countries – a review on current and future opportunities. Silva Fenn. 50 (5), article id 1660, 2016.
  • 5. LIMA A., SUWA R., DE MELLO RIBEIRO G., KAJIMOTO T., DOS SANTOS J., DA SILVA R.P., DE SOUZA C.A.S., DE BARROS P.C., NOGUCHI H., ISHIZUKA M., HIGUCHI N.: Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil, Forest Ecol. Manag. 277, 163, 2012.
  • 6. WANG J., FAN J., FAN X., ZHANG C., WU L., V. GADOW K. Crown and root biomass equations for the small trees of Pinus koraiensis under canopy. Dendrobiol. 70, 13, 2013.
  • 7. KULIEŠIS A., KULBOKAS G. Lithuanian forest inventory 2004-2008. Forest resources and their dynamic. Statistics of Lithuanian Forests, Part 2; Publisher: Ministry of Environment, State Forest Service, Kaunas: Lutute, Lithuania, 2009 [In Lithuanian].
  • 8. ALBERT K., ANNIGHÖFER P., SCHUMACHER J., AMMER C. Biomass equations for seven different tree species growing in coppice-with-standards forests in Central Germany. Scand J Forest Res. 29 (3), 210, 2014.
  • 9. DE-MIGUEL S., PUKKALA T., ASSAF N., SHATER Z. Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Ann. For. Sci. 71, 101, 2014.
  • 10. GOODMAN R.C., PHILLIPS O.L., TORRES D.C., FREITAS L., CORTESE S.T., MONTEAGUDO A., BAKER T.R. Amazon palm biomass and allometry. Forest Ecol Manag. 310, 994, 2013
  • 11. JAGODZIŃSKI A.M., KAŁUCKA I., HORODECKI P., OLEKSYN J. Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiol. 72, 139, 2014.
  • 12. QUINT T.C., DECH J.P. Allometric models for predicting the aboveground biomass of Canada yew (Taxus canadensis Marsh.) from visual and digital cover estimates. Can. J. For. Res. 40, 2003, 2010.
  • 13. ZENG W.S., TANG S.Z., HUANG G.S., ZHANG M. Population classification and sample structure on modeling of single-tree biomass equations for national biomass estimation in China. For. Resour. Manag. 3, 16, 2010.
  • 14. ZIANIS D., XANTHOPOULOS G., KALABOKIDIS K., KAZAKIS G., GHOSN D., ROUSSOU O. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in Northand South Aegean Islands, Greece. Eur. J. For. Res. 130, 145, 2011.
  • 15. SUSTANOVA O.V. [СУСТАВОВА О.В.] Structure and dynamics of artificial origin pine stands in the conditions of the steppe Zauralye [Структура и динамика сосновых древостоев искусственного происхождения в условиях степного Зауралья] Dissertation of Agricultural Sciences: 06.03.02: Ekaterinburg, 217 pp. RSL OD, 61:05-6/237, 2004 [In Russian].
  • 16. BASUKI T.M., van LAAKE P.E., SKIDMORE A.K., HUSSIN Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecol Manag. 257, 1684, 2009.
  • 17. CRECENTE-CAMPO F., MARSHALL P., LEMAY V., DIEGUEZ -ARANDA U. A crown profile model for Pinus radiate D. Don in northwestern Spain. Forest Ecol Manag. 257, 2370, 2009.
  • 18. DIBDIAKOVA J. Branch biomass of Norway spruce as a potential raw material in some geographical locations in Southern Norway. 20th European Biomass Conference and Exhibition, 18-22 June, Milan, Italy, 2012.
  • 19. FELDPAUSCH T.R., BANIN L., PHILLIPS O.L., BAKER T.R., LEWIS S.L., QUESADA C.A., AFFUM-BAFFOE K., ARETS E.J.M.M., BERRY N.J., BIRD M., BRONDIZIO E.S., DE CAMARGO P., CHAVE J., DJAGBLETEY G., DOMINGUES T.F., DRESCHER M., FEARNSIDE P.M., M. B. FRANÇA, FYLLAS N.M., LOPEZ-GONZALEZ G., HLADIK A., HIGUCHI N., HUNTER M.O., IIDA Y., SALIM K.A., KASSIM A.R., KELLER M., KEMP J., KING D.A., LOVETT J.C., MARIMON B.S., MARIMONJUNIOR B.H., LENZA E., MARSHALL A.R., METCALFE D. J., MITCHARD E.T.A., MORAN E.F., NELSON B.W., NILUS R., NOGUEIRA E.M., PALACEL M., PATIÑO S., PEH K.S.-H., RAVENTOS M.T., REITSMA J.M., SAIZ G., SCHRODT F., SONKE B., TAEDOUMG H.E., TAN S., WHITE L., WOLL H., LLOYD J. Height-diameter allometry of tropical forest trees. Biogeosciences. 8, 1081, 2011.
  • 20. HUNTER M.O., KELLER M., VICTORIA D., MORTON D.C. Tree height and tropical forest biomass estimation. Biogeosciences. 10, 8385, 2013.
  • 21. JELONEK T., PAZDROWSKI W., WALKOWIAK R., ARASIMOWICZ-JELONEK M., TOMCZAK A. Allometric models of foliage biomass in Scots pine (Pinus sylvestris L.). PJoES. 20 (2), 355, 2011.
  • 22. REPOLA J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43 (4), 625, 2009.
  • 23. GOODMAN R.C., PHILLIPS O.L., BAKER T.R. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. 24, 680, 2014.
  • 24. HOSODA K., IEHARA T. Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. J For Res. 15, 299, 2010.
  • 25. ZOU W.-T., ZENG W.-S., ZHANG L.-J., ZENG M. Modelling Crown Biomass for Four Pine Species in China. Forests. 6, 433, 2015.
  • 26. KHOSRAVI S., NAMIRANIAN M., GHAZANFARI H., SHIRVANI A. Crown biomass relationships of Lebanon oak in northern Zagros forests of Iran. Croat. J. For. Eng. 33, 239, 2012.
  • 27. POORTER H., NIKLAS K.J., REICH P.B., MOMMER L. Biomass allocation to leaves, stems and roots: Metaanalyses of interspecific variation and environmental control. New Phytologist. 193 (1), 30, 2011.
  • 28. MEYER T., D’ODORICO P., OKIN G.S., SHUGART H.H., CAYLOR K.K., O’DONNELL F.C., BHATTACHAN A., DINTWE K. An analysis of structure: biomass structure relationships for characteristic species of the western Kalahari. Afr J Ecol. 52 (1), 20, 2014.
  • 29. TIETEMA T. Biomass determination of fuelwood trees and bushes of Botswana, Southern Africa. Forest Ecol Manag. 60 (3-4), 257, 1993.
  • 30. VIDRIH M., VIDRIH T., KOTAR M. In Slovenia: Management of Intensive Land Use Systems. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR, editors. Agroforestry in Europe – Current Status and Future Prospects. Netherlands: SSBM, 397, 2009.
  • 31. ORZEŁ S., FORGIEL M., SOCHA J., OCHAŁ W. Biomass and annual production of common alder stands of the Niepoĺomice forest. EJPAU. 8 (1), 1, 2005.
  • 32. KEYSER T., SMITH F.W. Influence of crown biomass estimators and distribution on canopy fuel characteristics in Ponderosa Pine stands of the Black Hills. For. Sci. 56, 156, 2010.
  • 33. KULIEŠIS A., KASPERAVIČIUS A., KULBOKAS G., KVALKAUSKIENĖ M. Lithuanian national forest inventory 19982002. Sampling design, methods, results. Ministry of Environment, State Forest Service. Kaunas: Naujasis lankas, Lithuania. 2003 [In Lithuanian].
  • 34. USOLTSEV V.A., USOLTSEV A.V., KIRILLOVA V.V. Regional and species specificity of the relation between foliar biomass and dendrometric indices. Russian Forest Sciences (Lesovedenie). 32 (3), 157, 1998.
  • 35. ZAKHAROV A.V. [ЗАХАРОВ, А.В.] Growth and phytomass regularities of mixed oak forests in the central and Bryansk districts of the broad-leaved forest zone [Закономерности роста и фитомасса смешанных дубрав центрального и брянского округов зоны широколиственных лесов]: Dissertation of Agricultural Sciences: 06.03.02. Bryansk, 159, 2001 [In Russian].
  • 36. TAHVANAINEN T., FORSS E. Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland. Forest Ecol Manag. 255, 455, 2008.
  • 37. TAPPEINER II J.C., JOHN H.H. Biomass and Nutrient Content of Hazel Undergrowth. Ecology. 54, 1342, 1973.
  • 38. MIKŠYS V., VARNAGIRYTĖ-KABAŠINSKIENĖ I., STUPAK I., ARMOLAITIS K., KUKKOLA M., WOJCIK J. Above-ground biomass functions for Scots pine in Lithuania. Biomass Bioenergy. 31, 685, 2007.
  • 39. PORTÉ A., TRICHET P., BERT D., LOUSTAU D. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aït.). Forest Ecol Manag. 158, 17, 2002.
  • 40. NOGUEIRA JUNIOR L.R., ENGEL V.L., PARROTTA J.A., GALVÃO DE MELO A.C., RÉ D.S. Allometric equations for estimating tree biomass in restored mixedspecies Atlantic forest stands. Biota Neotrop. 14 (2), 1, 2014
  • 41. SUMIDA A., MIYAURA T., TORII H. Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 33, 106, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d98fa496-d662-4e7e-b9b3-cf363a4b2b73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.