PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 10 |

Tytuł artykułu

Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Paulownia witches’ broom (PaWB) caused by phytoplasma is a destructive disease of Paulownia in China and has been studied over the past 40 years. Recently, our research team found that methyl methanesulfonate (MMS) could help Paulownia plants recover from the symptoms of Paulownia witches’ broom in whichthe expression levels of genes related to photosynthesis, carbohydrate and nitrogen metabolism, plant-pathogeninteraction, circadian rhythm changed. However, the molecular mechanisms underlying the interaction between PaWB and phytoplasma are still not fully understood. Here, high-throughput mRNA sequencing and de novo assembly were conducted in order to investigate gene expression profiles in three Paulownia tomentosa samples (healthy plantlets, diseased plantlets, and diseased plantlets treated with MMS. A total of 85,545 all-unigene were obtained, 2540 of which were significantly differentially expressed among the three samples. Some genes associated with folate and fatty acid synthesis, signal transduction pathways of plant hormones were identified, and their expression patterns were further validated using quantitative real-time PCR. To our knowledge, this is the first transcriptome-based study to demonstrate variations of gene expression related to morphological changes in metabolic pathways of phytoplasma-infected P. tomentosa plants. The information provided in this study will help understand the molecular pathogenesis of the Paulownia plant in response to phytoplasma infection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

10

Opis fizyczny

Article: 202 [12 p.], fig.,ref.

Twórcy

autor
  • Institute of Paulownia, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
  • College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
autor
  • Institute of Paulownia, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
  • College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
autor
  • Institute of Paulownia, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
  • College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
autor
  • Institute of Paulownia, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China
  • College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, People’s Republic of China

Bibliografia

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402
  • Anukul N, Ramos R, Mehrshahi P, Castelazo A, Parker H et al (2010) Folate polyglutamylation is required for rice seed development. Rice 3:181–193
  • Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995
  • Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Bioph Res Co 193:1184–1190
  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488
  • Basset GJC, Quinlivan EP, Gregory JF III, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453
  • Bayliss KL, Saqib M, Dell B, Jones MG, Hardy GE St (2005) First record of ‘Candidatus Phytoplasma australiense’ in Paulownia trees. Australas Plant Path 34:123–124
  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188
  • Bertaccini A, Duduk B (2010) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48:355–378
  • Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141
  • Cao XB, Fan GQ, Deng MJ, Zhao ZL, Dong YP (2014a) Identification of genes related to Paulownia witches’ broom by AFLP and MSAP. Int J Mol Sci 15:14669–14683
  • Cao XB, Fan GQ, Zhao ZL, Deng MJ, Dong YP (2014b) Morphological changes of paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. Plos One 9:e1125331
  • Ćurković Perica M (2008) Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J Appl Microbiol 105:1826–1834
  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548
  • Doi Y, Ternaka M, Yora K, Asuyama H (1967) Mycoplasma or PLTgroup-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows and Paulownia witches’ broom. Ann Phytopathol Soc Jpn 33:259–266
  • Ehya F, Monavarfeshani A, Fard EM, Farsad LK, Nekouei MK, Mardi M, Salekdeh GH (2013) Phytoplasma-responsive micro-RNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. Plos One 8:e66372
  • Erbar C, Gülden C (2011) Ontogeny of the flowers in Paulownia tomentosa—a contribution to the recognition of the resurrected monogeneric family Paulowniaceae Flora—morphology, distribution. Funct Ecol Plants 206:205–218
  • Fan GQ, Zhang S, Zhai XQ, Liu F, Dong ZQ (2007) Effects of antibiotics on the paulownia witches’ broom phytoplasmas and pathogenic protein related to witches’ broom symptom. Sci Silv Sin 43:138–142
  • Fan GQ, Dong YP, Deng MJ, Zhao ZL, Niu SY, Xu EK (2014) Plantpathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci 15:23141–23162
  • Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Biol 8:518–525
  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693
  • Grabherr MJ, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652
  • Hegele M, Bangerth F (1998) Changes in IAA and ABA levels and IAA transport of proliferation-diseased apple trees. Acta Hortic 463:97–108
  • Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423
  • Hoshi A, Ishii Y, Kakizawa S, Oshima K, Namba S (2007) Hostparasite interaction of phytoplasmas from a molecular biological perspective. B Insectol 60:105
  • Hoshi A, Oshima K, Kakizawa S et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421
  • Hren M, Nikolić P, Rotter A et al (2009) ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genom 10:460
  • Inoue T, Higuchi M, Hashimoto Y et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063
  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intel Syst Mol Biol 99:138–148
  • Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57
  • Kim TW, Guan S, Burlingame Alma L, Wang ZY (2011) The CDG1 Kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571
  • Kobayashi Y, Murata M, Minami H et al (2005) Abscisic acidactivated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949
  • Lee IM, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842
  • Leljak-Levanic D, Jezic M, Cesar V et al (2010) Biochemical and epigenetic changes in phytoplasma -recovered periwinkle after indole-3-butyric acid treatment. J Appl Microbiol 109:2069–2078
  • Lin C, Zhou T, Li H, Fan Z, Li Y, Piao C, Tian G (2009) Molecular characterisation of two plasmids from paulownia witches’ broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur J Plant Pathol 123:321–330
  • Liu RN, Dong YP, Fan GQ, Zhao ZL, Deng MJ, Cao XB, Niu SY (2013) Discovery of genes related to witches broom disease in Paulownia tomentosa 9 Paulownia fortunei by a de novo assembled transcriptome. Plos One 8:e80238
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408
  • Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol 80:210–221
  • McKersie BD, Crowe JH, Crowe LM (1989) Free fatty acid effects on leakage, phase properties and fusion of fully hydrated model membranes. BBA Biomembranes 982:156–160
  • Moreau S, Fromentin J, Vailleau F et al (2014) The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol 201:1343–1357
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat Methods 5:621–628
  • Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ (2013) Transcriptomic analysis of Paulownia infected by Paulownia witches’ broom phytoplasma. Plos One 8:e77217
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R (2014) Arabidopsis GOLDEN2-LIKE GLK transcription factors activate jasmonic acid JA-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol Plant Pathol 15:174–184
  • Namba S (2011) Phytoplasmas: a century of pioneering research. J Gen Plant Pathol 776:345–349
  • Oshima K, Kakizawa S, Nishigawa H et al (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29
  • Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 4:230
  • Prieschl EE, Baumruker T (2000) Sphingolipids: second messengers, mediators and raft constituents in signaling. Immunol Today 21:555–560
  • Rébeillé F, Macherel D, Mouillon JM, Garin J, Douce R (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J 16:947–957
  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:148
  • SchneiderováK, Šmejkal K (2014) Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem Rev. doi:10.1007/s11101-014-9376-y
  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395
  • Slabas AR, Chase D, Nishida I et al (1992) Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG-gene product of the nitrogenfixing soil bacterium Rhizobium meliloti. Biochem J 283:321–326
  • Sugimoto H, Kondo S, Tanaka T et al (2014) Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. J Exp Bot 65:5385–5400
  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Ann Rev Phytopathol 49:175–195
  • Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer HPt factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43:123–129
  • Uematsu S, Sato S, Yamamoto M et al (2005) Interleukin-1 receptorassociated kinase-1 plays an essential role for Toll-like receptor TLR 7-and TLR9-mediated interferon-a induction. J Exp Med 201:915–923
  • Umezawa T, Sugiyama N, Mizoguchi M et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593
  • Wang J, Marks BD, Kahindo C et al (2010) Genetic and serological analyses of elongation factor EF-Tu of paulownia witches’ broom phytoplasma (16SrI-D). Plant Pathol 59:972–981
  • Win N, Kyu K, Lee Y, Kim Y, Back C, Chung H, Jung H (2012) Reclassification of aster yellows group phytoplasmas in Korea. J Gen Plant Pathol 78:264–268
  • Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteriachallenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genom 11:472
  • Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucl Acids Res 34:W293–W297
  • Yokoyama A, Yamashino T, Amano YI, Tajima Y, Imamura A,Sakakibara H, Mizuno T (2007) Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokininmediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96
  • Zhai XQ, Cao XB, Fan GQ (2010) Growth of Paulownia witches’ broom seedlings treated with methyl methane sulphonate and SSR analysis. Sci Silv Sin 46:176–181
  • Zhang YZ, Cao XB, Zhai XQ, Fan GQ (2009) DNA extraction of AFLP reaction system for the Paulownia plant. J Henan Agric Univ 43:610–614
  • Zhang X, Li M, Agrawal A, San KY (2011) Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 13:713–722

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d92d41ba-e3c0-4d32-b9b4-28f2bcf53ea0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.