PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

MicroRNA-488 inhibits tongue squamous carcinoma cell invasion and EMT by directly targeting ATF3

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: It has been reported that the expression of activating transcription factor 3 (ATF3) is closely associated with both microRNA (miRNA) processing and the progress of many cancers. Our study aimed to explore the interaction between ATF3 and miR-488 in tongue squamous cell carcinoma (TSCC). Methods: Quantitative real-time PCR was performed to detect the levels of ATF3 and miR-488 in TSCC tissues and cell lines. Cell invasion and epithelial–mesenchymal transition (EMT) were assessed to determine the biological functions of miR-488 and ATF3 in TSCC cells. The mRNA and protein levels of ATF3 were measured using quantitative RT-PCR and western blotting. Luciferase assays were performed to validate ATF3 as an miR-488 target in TSCC cells. Results: We found that the level of miR-488 significantly decreased and the expression of ATF3 significantly increased in TSCC tissues and cell lines. A low level of miR-488 was closely associated with increased expression of ATF3 in TSCC tissues. Introducing miR-488 significantly inhibited the invasion and EMT of TSCC cells, and knockdown of miR-488 promoted both processes. The bioinformatics analysis predicted that ATF3 is a potential target gene of miR-488. The luciferase reporter assay showed that miR-488 could directly target ATF3. ATF3 silencing had similar effects to miR-488 overexpression on TSCC cells. Overexpression of ATF3 in TSCC cells partially reversed the inhibitory effects of the miR-488 mimic. Conclusion: miR-488 inhibited cell invasion and EMT of TSCC cells by directly downregulating ATF3 expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-14,fig.,ref.

Twórcy

autor
  • Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
autor
  • Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
autor
  • Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China
autor
  • Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People’s Republic of China

Bibliografia

  • 1. Perez-Sayans M, Somoza-Martin JM, BarrosAngueira F, Reboiras-Lopez MD, Gandara Rey JM, Garcia-Garcia A. Genetic and molecular alterations associated with oral squamous cell cancer (review). Oncol Rep. 2009;22:1277–82.
  • 2. Lwin CT, Hanlon R, Lowe D, Brown JS, Woolgar JA, Triantafyllou A, Rogers SN, Bekiroglu F, Lewis-Jones H, Wieshmann H, Shaw RJ. Accuracy of MRI in prediction of tumour thickness and nodal stage in oral squamous cell carcinoma. Oral Oncol. 2012;48:149–54.
  • 3. Jensen DH, Dabelsteen E, Specht L, Fiehn AM, Therkildsen MH, Jonson L, Vikesaa J, Nielsen FC, von Buchwald C. Molecular profiling of tumour budding implicates TGFbeta-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma. J Pathol. 2015;236:505–16.
  • 4. Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, Ribeiro DA. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9:329–35.
  • 5. Patel SG, Amit M, Yen TC, Liao CT, Chaturvedi P, Agarwal JP, Kowalski LP, Ebrahimi A, Clark JR, Cernea CR, Brandao SJ, Kreppel M, Zoller J, Fliss D, Fridman E, Bachar G, Shpitzer T, Bolzoni VA, Patel PR, Jonnalagadda S, Robbins KT, Shah JP, Gil Z. Lymph node density in oral cavity cancer: results of the international consortium for outcomes research. Br J Cancer. 2013;109:2087–95.
  • 6. Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem. 1996;271:1695–701.
  • 7. Yin X, Wolford CC, Chang YS, McConoughey SJ, Ramsey SA, Aderem A, Hai T. ATF3, an adaptive-response gene, enhances TGF-beta signaling and cancer-initiating cell features in breast cancer cells. J Cell Sci. 2010;123:3558–65.
  • 8. Juilland M, Gonzalez M, Erdmann T, Banz Y, Jevnikar Z, Hailfnger S, Tzankov A, Grau M, Lenz G, Novak U, Thome M. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas. Blood. 2016;127:1780–9.
  • 9. Wang Z, Yan C. Emerging roles of ATF3 in the suppression of prostate cancer. Mol Cell Oncol. 2015;3:e1010948.
  • 10. Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, Yan C. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene. 2015;34:4975–84.
  • 11. Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q, Shen JH, Wu ZY, Wu JY, Xu LY, Li EM. ATF3 functions as a novel tumor suppressor with prognostic signifcance in esophageal squamous cell carcinoma. Oncotarget. 2014;5:8569–82.
  • 12. Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, Yang W. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016;12:1642–8.
  • 13. Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Jöhrens K, Hagemeier C, Bommert K, Stein H, Dörken B, Bargou RC. Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/reed-Sternberg cells. Blood. 2006;107:2536–9.
  • 14. Lin DD, Sun YN. Research advances in ATF3 and tumor. Med Rev. 2012;18:219–21.
  • 15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
  • 16. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.
  • 17. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. Aberrant expression of oncogenic and tumorsuppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3:e2557.
  • 18. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.
  • 19. Sun L, Liang J, Wang Q, Li Z, Du Y, Xu X. MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Prolif. 2016;49:628–35.
  • 20. Hou C, Dong Y, Zhang F, Du B. MicroRNA-509 acts as a tumor suppressor in tongue squamous cell carcinoma by targeting epidermal growth factor receptor. Mol Med Rep. 2017;16:7245–52.
  • 21. Wu X, Gong Z, Sun L, Ma L, Wang Q. MicroRNA-802 plays a tumour suppressive role in tongue squamous cell carcinoma through directly targeting MAP2K4. Cell Prolif; 2017. https://doi.org/10.1111/cpr.12336.
  • 22. Fang C, Chen YX, Wu NY, Yin JY, Li XP, Huang HS, Zhang W, Zhou HH, Liu ZQ. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci Rep. 2017;7:40384.
  • 23. Hu D, Shen D, Zhang M, Jiang N, Sun F, Yuan S, Wan K. MiR-488 suppresses cell proliferation and invasion by targeting ADAM9 and lncRNA HULC in hepatocellular carcinoma. Am J Cancer Res. 2017;7:2070–80.
  • 24. van Dam H, Castellazzi M. Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene. 2001;20:2453–64.
  • 25. Yancoskie AE, Sreekantaiah C, Jacob J, Rosenberg A, Edelman M, Antonescu CR, Fantasia JE. EWSR1 and ATF1 rearrangements in clear cell odontogenic carcinoma: presentation of a case. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:e115–8.
  • 26. Covinsky M, Gong S, Rajaram V, Perry A, Pfeifer J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol. 2005;36:74–81.
  • 27. Dunham C, Hussong J, Seiff M, Pfeifer J, Perry A. Primary intracerebral angiomatoid fbrous histiocytoma: report of a case with a t(12;22) (q13;q12) causing type 1 fusion of the EWS and ATF-1 genes. Am J Surg Pathol. 2008;32: 478–84.
  • 28. Tian Z, Zhou XH, Jia HS, Li SY. The roles of ATF-2 in tumor tumorigenesis. Prog Physiol Sci. 2012;43:463–7.
  • 29. Ameri K, Harris AL. Activating transcription factor 4. Int J Biochem Cell Biol. 2008;40:14–21.
  • 30. Kong X, Meng W, Zhou Z, Li Y, Zhou B, Wang R, Zhan L. Overexpression of activating transcription factor 5 in human rectal cancer. Exp Ther Med. 2011;2:827–31.
  • 31. Greene LA, Lee HY, Angelastro JM. The transcription factor ATF5: role in neurodevelopment and neural tumors. J Neurochem. 2009;108:11–22.
  • 32. Hu M, Wang B, Qian D, Li L, Zhang L, Song X, Liu DX. Interference with ATF5 function enhances the sensitivity of human pancreatic cancer cells to paclitaxel-induced apoptosis. Anticancer Res. 2012;32:4385–94.
  • 33. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602–14.
  • 34. Wu X, Xin Z, Zhang W, Zheng S, Wu J, Chen K, Wang H, Zhu X, Li Z, Duan Z, Li H, Liu Y. A missense polymorphism in ATF6 gene is associated with susceptibility to hepatocellular carcinoma probably by altering ATF6 level. Int J Cancer. 2014;135:61–8.
  • 35. Lacunza E, Rabassa ME, Canzoneri R, PellonMaison M, Croce MV, Aldaz CM, Abba MC. Identifcation of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response. Cell Stress Chaperones. 2014;19:379–88.
  • 36. Guan M, Fousek K, Chow WA. Nelfnavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castrationresistant prostate cancer. FEBS J. 2012;279: 2399–411.
  • 37. Trondl R, Flocke LS, Kowol CR, Heffeter P, Jungwirth U, Mair GE, Steinborn R, Enyedy EA, Jakupec MA, Berger W, Keppler BK. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells. Mol Pharmacol. 2014;85:451–9.
  • 38. Kresse SH, Berner JM, Meza-Zepeda LA, Gregory SG, Kuo WL, Gray JW, Forus A, Myklebost O. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH. Mol Cancer. 2005;4:39.
  • 39. Peters CS, Liang X, Li S, Kannan S, Peng Y, Taub R, Diamond RH. ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. J Biol Chem. 2001;276:13718–26.
  • 40. Guo HQ, Ye S, Huang GL, Liu L, Liu OF, Yang SJ. Expression of activating transcription factor 7 is correlated with prognosis of colorectal cancer. J Cancer Res Ther. 2015;11:319–23.
  • 41. Thompson MR, Xu D, Williams BR. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl). 2009;87:1053–60.
  • 42. Maciag AE, Nandurdikar RS, Hong SY, Chakrapani H, Diwan B, Morris NL, Shami PJ, Shiao YH, Anderson LM, Keefer LK, Saavedra JE. Activation of the c-Jun N-terminal kinase/activating transcription factor 3 (ATF3) pathway characterizes effective arylated diazeniumdiolate-based nitric oxide-releasing anticancer prodrugs. J Med Chem. 2011;54:7751–8.
  • 43. Zhang DM, Lin ZY, Yang ZH, Wang YY, Wan D, Zhong JL, Zhuang PL, Huang ZQ, Zhou B, Chen WL. IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via association with EZH2. Am J Transl Res. 2017;9:3474–86.
  • 44. Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B, Yun Y, Liu W, Wang H, Wang Y, Wen N. FoxM1 promotes epithelialmesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-met/AKTdependent positive feedback loop. Anti-Cancer Drugs. 2018;29:216–26.
  • 45. Mendonça BDS, Agostini M, Aquino IG, Dias WB, Bastos DC, Rumjanek FD. Suppression of MAGE-A10 alters the metastatic phenotype of tongue squamous cell carcinoma cells. Biochem Biophys Rep. 2017;10:267–75.
  • 46. Osada H, Takahashi T. MicroRNAs in biological processes and carcinogenesis. Carcinogenesis. 2007;28:2–12.
  • 47. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.
  • 48. Yang Z, Feng Z, Gu J, Li X, Dong Q, Liu K, Li Y, OuYang L. microRNA-488 inhibits chemoresistance of ovarian cancer cells by targeting Six1 and mitochondrial function. Oncotarget. 2017;8:80981–93.
  • 49. Lv Y, Shi Y, Han Q, Dai G. Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro. Mol Med Rep. 2017;16:4437–44.
  • 50. Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H, Ren M, He S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumour Biol. 2016;37:8691–8.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d9209fd4-3f37-4f55-b465-31d0209ca501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.