PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 61 | 2 |

Tytuł artykułu

A microanatomical and histological study of the postcranial dermal skeleton of the Devonian actinopterygian Cheirolepis canadensis

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Devonian stem-actinoterygian Cheirolepis canadensis is potentially important to understand the evolution of the dermal skeleton of osteichthyans, but the last detailed histological study on this taxon was published more than forty years ago. Here, we present new data about the morphology and the histological structure of scales, fulcra, and fin-rays in the Devonian actinopterygian Cheirolepis canadensis through SEM and photomicroscopy. The scales have a typical palaeoniscoid organisation, with ganoine layers overlaying dentine and a bony basal plate, but the ganoine surface lacks the characteristic microtubercles that have been described on the ganoine surface of the scales of polypterids and many other actinopterygians. Fin-rays are composed of segmented and ramified lepidotrichia that show a structure reminiscent of scales, with ganoine and dentine components lying on a thick bony base. We describe articular processes between lepidotrichia that are reminiscent of, and plausibly homologous with, the peg-and-socket articulations between the scales. The analysis of the postcranial dermal skeleton of Cheirolepis canadensis shows that structural similarities between scales and lepidotrichia of this basal actinopterygian are greater than in more recent actinopterygians. The new data on histological and microanatomical structure of the dermal skeleton lend additional support to the hypothesis that lepidotichia are derivatives of scales, though they are also compatible with the more general hypothesis that scales, lepidotrichia and fulcra belong to the same morphogenetic system.

Wydawca

-

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.363-376,fig.,ref.

Twórcy

  • Sorbonne Universites, ISTEP, UMR 7193 (CNRS/UPMC), Universite Paris VI, 4 place Jussieu, B.C.19, F-75252 Paris cedex 05, France
autor
  • BOREA, UMR 7208 (CNRS/IRD/MNHN/UPMC), Departement des Milieux et Peuplements Aquatiques, Museum national d’Histoire naturelle, C.P.26, 43 rue Cuvier, F-75231 Paris cedex 05, France
autor
  • CR2P, UMR 7207 (CNRS/MNHN/UPMC/Sorbonne Universités), Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements, Muséum National d’Histoire Naturelle, Bâtiment de Géologie, C.P.48, 43 rue Buffon, F-75231, Paris cedex 05, France

Bibliografia

  • Agassiz, L. 1833−44. Recherches sur les Poissons Fossiles. 5 volumes and atlas. Imprimerie Petitpierre, Neuchâtel.
  • Aldinger, H. 1937. Permische Ganoidfische aus Ostgrönland. Meddelelser om Grønland 102: 5–383.
  • Arratia, G. 2008. Actinopterygian postcranial skeleton with special reference to the diversity of fin ray elements, and the problem of identifying homologies. In: G. Arratia, H.-P. Schultze, and M.V.H. Wilson (eds.), Mesozoic Fishes, Volume 4: Homology and Phylogeny, 49–101. Dr. Friedrich Pfeil, München.
  • Arratia, G. 2009. Identifying patterns of diversity of the actinopterygian fulcra. Acta Zoologica 90 (Supplement 1): 220–235.
  • Arratia, G. and Cloutier, R. 1996. Reassessment of the morphology of Cheirolepis canadensis (Actinopterygii). In: H.-P. Schultze and R. Cloutier (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada, 165–197. Dr. Friedrich Pfeil, München.
  • Arratia, G. and Cloutier, R. 2004. A new cheirolepid fish from the Middle–Upper Devonian of Red Hill, Nevada, USA. In: G. Arratia, M.V.H. Wilson, and R. Cloutier (eds.), Recent Advances in the Origin and Early Radiation of Vertebrates, 583−598. Dr. Friedrich Pfeil, München.
  • Arratia, G., Schultze, H.P., and Casciotta, J. 2001. Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology. Journal of Morphology 250: 101−172.
  • Baudelot, E. 1873. Observations sur la structure et le développement des nageoires des poissons osseux. Archives de Zoologie générale et expérimentale (notes et revues) 2: 87–244.
  • Betancur-R., R., Ortí, G., and Pyron, R.A 2015. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in rayfinned fishes. Ecology Letters 18: 441−450.
  • Bouvet, J. 1974. Différenciation et ultrastructure du squelette distal de la nageoire pectorale chez la truite indigene (Salmo trutta fario L.). I Différenciation et ultrastructure des actinotriches. Archives d’Anatomie microscopique et de Morphologie expérimentale 63: 79−96.
  • Botella, H., Blom, H., Dorka, M., Ahlberg, P.E., and Janvier, P. 2007. Jaws and teeth of the earliest bony fishes. Nature 448: 583–586.
  • Brazeau, M.D. and Friedman, M. 2014. The characters of Palaezoic jawed vertebrates. Zoological Journal of the Linnean Society 170: 779−821.
  • Burdak, V.D. 1979. Morphologie fonctionnelle du tégument écailleux des poissons. La pensée scientifique, Kiev. Translated from Russian to French by G. de Faget, F.J. Meunier, and J.-Y. Sire. Cybium 1986, 10 (3, supplement): 1–147.
  • Chen, D., Janvier, P., Ahlberg, P.E., and Blom, H. 2012. Scale morphology and squamation of the late Silurian osteychthyan Andreolepis from Gotland, Sweden. Historical Biology 24: 411–423.
  • Chidiac, Y. 1996. Paleoenvironmental interpretation of the Escuminac Formation based on geochemical evidence. In: H.-P. Schultze and R. Cloutier (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. 47–53. Dr. Fr. Pfeil, München.
  • Cloutier, R., Lobozia, S., Candilier, A.-M., and Blieck, A. 1996. Biostratigraphy of the Upper Devonian Escuminac Formation, eastern Québec, Canada: a comparative study based on miospores and fishes. Review of Palaeobotany and Palynology 93: 191–215.
  • Daget, J., Gayet, M., Meunier, F.J., and Sire, J.-Y. 2001. Major discoveries on the dermal skeleton of fossil and recent polypteriforms. Fish and Fisheries 2: 113–124.
  • Debiais-Thibaud, M., Oulion, S., Bourrat, F., Laurenti, P., Casane, D., and Borday-Birraux, V. 2011. The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evolutionary Biology 11: 1–14.
  • Derycke, C. and Chancogne-Weber, C. 1995. Histological discovery on acanthodian scales from the Famennian of Belgium. Geobios 19: 31–34.
  • Donoghue, P.C.J. 2001. Microstructural variation in conondont enamel is a functional adaptation. Proceedings of the Royal Society of London B 268: 1691–1698.
  • Donoghue, P.C.J., Sansom, I.J., and Downs, J.P. 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, canalization of skeletal development. Journal of Experimental Zoology (Molecular, and Developmental Evolution) 306 B: 278–294.
  • Durán, I., Mari-Beffa, M., Santamaria, J.A., Beccera, J., and Santoz-Ruiz, L. 2011. Actinotrichia collagens and their role in fin formation. Developmental Biology 354: 160–172.
  • Ermin, R., Rau, R., and Reibedanz, H. 1971. Der submikroskopische Aufbau der Ganoid Schuppen von Polypterus im Vergleich zu den Zahngeweben der Säugetiere. Biomineralisation 3: 12–21.
  • Fletcher, T., Altringham, J., Peakall, J., Wignall, P., and Dorrell, R. 2014. Hydrodynamics of fossil fishes. Proceedings of the Royal Society of London B 281: 20140703.
  • Francillon-Vieillot, H., Buffrénil, V. de, Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.-Y., Zylberberg, L., and Ricqlès, A. de1990. Microstructure and mineralization of vertebrate skeletal tissues. In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Vol. I, 471–530. Van Nostrand, New York.
  • Friedman, M. 2007. Styloichthys as the oldest coelacanth: implications for early osteichthyan interrelationships. Journal of Systematic Palaeontology 5: 289–343.
  • Friedman, M. and Brazeau, M.D. 2010. A reappraisal of the origin and basal radiation of the Osteichthyes. Journal of Vertebrate Paleontology 30: 36–56.
  • Gardiner, B.G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum of National History (Geology) 37: 173–428.
  • Gardiner, B.G. and Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society 97: 135–187.
  • Gayet, M. and Meunier, F.J. 1986. Apport de l’étude de l’ornementation microscopique de la ganoïne dans la détermination de l’appartenance générique et/ou spécifique des écailles isolées. Comptes Rendus de l’Académie des Sciences, Série III, Sciences de la vie 303: 1259–1261.
  • Gayet, M. and Meunier, F.J. 1992. Polyptériformes (Pisces, Cladistia) du Maastrichtien et du Paléocène de Bolivie. Geobios 14: 159–168.
  • Gayet, M., Meunier, F.J., and Levrat-Calviac, V. 1988. Mise en évidence des plus anciens Polypteridae dans le gisement sénonien d’In Becetem (Niger). Comptes Rendus de l’Académie des Sciences, Série III, Sciences de la vie/Life sciences 307: 205–210.
  • Gegenbaur, C. 1878. Grundriss der vergleichenden Anatomie. 2nd edition, viii + 655 pp. Wilhelm Engelmann, Leipzig.
  • Gemballa, S. and Bartsch, P. 2002. Architecture of the integument in lower teleostomes: functional morphology and evolutionary implications. Journal of Morphology 253: 290–309.
  • Géraudie, J. 1977. Initiation of the actinotrichial development in the early fin bud of the fish Salmo. Journal of Morphology 15: 353–362.
  • Géraudie, J. 1984. Fine structural comparative peculiarities of the developing dipnoan dermal skeleton in the fins of Neoceratodus larvae. Anatomical Record 209: 115–123.
  • Géraudie, J. 1988. Fine structural peculiarities of the pectoral fin dermoskeleton of two Brachiopterygii, Polypterus senegalus and Calamoichthys calabaricus (Pisces, Osteichthyes). Anatomical Record 221: 455–468.
  • Géraudie, J. and Landis, W. 1982. The fine structure of the developing pelvic fin dermal skeleton in the trout Salmo gairdneri. American Journal of Anatomy 163: 141–156.
  • Géraudie, J. and Meunier, F.J. 1980. Elastoidin actinotrichia in coelacanth fins: a comparative study with teleosts. Tissue and Cell 12: 637–645.
  • Géraudie, J. and Meunier, F.J. 1982. Comparative fine structure of the osteichthyan dermotrichia. Anatomical Record 202: 325–328.
  • Gillis, J.A. and Donoghue, P.C.J. 2007. The homology and phylogeny of chondrichthyan tooth enameloid. Journal of Morphology 268: 33–49.
  • Goodrich, E.S. 1904. On the dermal fin-rays of fishes living and extinct. Quarterly Journal of the Microscopical Society 47: 465–522.
  • Goodrich, E.S. 1907. On the scales of fish living and extinct, and their importance in classification. Proceedings of the Zoological Society of London 2: 751–774.
  • Gross, W. 1953. Devonische Palaeonisciden-Reste in Mittel-und Osteuropa. Paläontologische Zeitschrift 27: 85–112.
  • Gross, W. 1966. Ueber Shuppenkunde. Neues Jahrbuch Geologische Paläontologische Abhandlugen 125: 29–48.
  • Gross, W. 1969. Lophosteus superbus Pander, ein Teleostome aus dem Silur Oesels. Lethaia 2: 15–47.
  • Gross, W. 1973. Kleinschuppen, Flossenstacheln und Zähne von Fischen aus europäischen und nordamerkanische Bonebeds des Devons. Paleontographica A 142: 51–155.
  • Hertwig, O. 1879. Ueber das Hautskelet der Fische. Morphologisches Jahrbuch 5: 1–21.
  • Janvier, P. 1971. Nouveau matériel d’Andreolepis hedei Gross, Actinoptérygien énigmatique du Silurien de Gotland (Suède). Comptes Rendus de l’Académie des Sciences, Série III, Sciences de la vie/Life sciences 273: 2223–2224.
  • Janvier, P. 1978. On the oldest known Teleostome fish Andreolepis hedei Gross (Ludlow of Gotland), and the systematic position of the Lophosteids. Geologia 27: 88–95.
  • Janvier, P. 1985. Les céphalaspides du Spitsberg. Cahiers de Paléontologie, Section Vertébrés. 244 pp. CNRS Editions, Paris.
  • Janvier, P. 1996. Early Vetebrates. Oxford Monographs on Geology and Geophysics 33: 1–393.
  • Jarvik, E. 1959. Dermal fin-rays and Holmgren’s principle of delamination. Kungliga Svenska Vetenskas Akademien Handlingar 6: 1–51.
  • Jessen, H. 1968. Moythomasia nitida Gross and M. cf. striata Gross, devonische Palaeonisciden aus dem oberen Plattenkalk der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge). Palaeontographica A 128: 87–114.
  • Jessen, H. 1972. Die Bauchschuppen von Moythomasia nitida Gross (Pisces, Actinopterygii). Paläontogische Zeitschrift 46: 121–132.
  • Johanson, Z., Burrow, C., Warren, A., and Garvey, J. 2005. Homology of fin lepidotrichia in osteichthyan fishes. Lethaia 38: 27–36.
  • Kawasaki, K. 2009. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Development Genes and Evolution 219: 147–157.
  • Kawasaki, K. 2011. The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs 194: 108–112.
  • Kawasaki, K. and Amemiya, C.T. 2014. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. Journal of Experimental Zoology (Molecular and Developmental Evolution) 322 B: 390–402.
  • Kawasaki, K. and Weiss, K.M. 2006. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the calcium-binding phosphoprotein family. Journal of Experimental Zoology (Molecular and Developmental Evolution) 306 B: 295–316.
  • Kawasaki, K. and Weiss, K.M. 2008. SCPP gene evolution and the dental mineralization continuum. Journal of Dental Research 87: 520–531.
  • Kawasaki, K., Suzuki, T., and Weiss, K.M. 2004. Genetic basis for the evolution of vertebrate mineralized tissues. Proceedings of the National Academy of Science 101: 11356–11361.
  • Kawasaki, K., Suzuki, T., and Weiss, K.M. 2005. Phenogenetic drift in evolution: the changing basis of vertebrate teeth. Proceedings of the National Academy of Science 102: 18063–18068.
  • Kemp, N.E. and Park, J.H. 1970. Regeneration of lepidotrichia and actinotrichia in the tail fin of the teleost Tilapia mossambica. Developmental Biology 22: 321–342.
  • Kerr, T. 1952. The scales of primitive living Actinopterygians. Proceedings of the Zoological Society of London 122: 55–78.
  • Klaatsch, H. 1890. Zur Morphologie der Fischschuppen und zur Geschichte der Hartsubstanzgewebe. Mophologische Jahrbuch 16: 97–202.
  • Kogaya, Y. 1997. Histochemeical and immunohistochemical characterization of the ganoine layer of Polypterus senegalus. Association for Comparative Biology of Tooth Enamel 5: 23–29.
  • Lanzing, W.J.R. 1976. The fine structure of fins and finrays of Tilapia mossambica (Peters). Cell Tissue Research 173: 349–356.
  • Lauder, G.V. and Liem, K.F. 1983. The evolution and interrelationships of the Actinopterygian fishes. Bulletin of the Museum of Comparative Zoology, Harvard 150: 95–197.
  • Lehman, J.P. 1947. Description de quelques exemplaires de Cheirolepis canadensis (Whiteaves). Kungliga Svenska Vetenskas Akademien Handlingar 24: 1–40.
  • Maisey, J.G. 1988. Phylogeny of early vertebrate skeletal induction and ossification patterns. Evolutionary Biology 22: 1–36.
  • Märss, T. 2001. Andreolepis (Actinopterygii) in the Upper Silurian of Northern Eurasia. Proceedings of the Estonian Academy of Science. Geology 50: 174–189.
  • Märss, T. 2006. Exoskeletal ultrasculpture of early vertebrates. Journal of Vertebrate Paleaontology 26: 235–252.
  • Meunier, F.J. 1980. Recherches histologiques sur le squelette dermique des Polypteridae. Archives de Zoologie Générale et Expérimentale 121: 279–295.
  • Meunier, F.J. and Gayet, M. 1996. A new Polypteriforme from the Late Cretaceous and the middle Paleocene of South America. In: G. Arratia and G. Viohl (eds.), Mesozoic Fishes: Systematics and Paleoecology, 95–103. Verlag Dr. Friedrich Pfeil, München.
  • Meunier, F.J. and Laurin, M. 2012. A microanatomical and histological study of the long bones in the Devonian sarcopterygian Eusthenopteron foordi. Acta Zoologica 93: 88–97.
  • Meunier, F.J., Gayet, M., Géraudie, J., Sire, J.Y., and Zylberberg, L. 1988. Données ultrastructurales sur la ganoïne du dermosquelette des Actinoptérygiens primitifs. Mémoires du Museum national d’Histoire naturelle, Série C 53: 77–83.
  • Min, Z. and Schultze, H.-P. 2001. Interrelationships of basal osteichthyans. In: P.E. Ahlberg (ed.), Major Events in Early Vertebrate Evolution. Palaeontology, Phylogeny, Genetics and Development. Systematics Association, Special Volume 61: 289–314.
  • Minelli, A. 2003. The origin and evolution of appendages. International Journal of Developmental Biology 47: 573–581.
  • Moss, M.L. 1964. The phylogeny of mineralised tissues. International Review of General and Experimental Zoology 1: 297–331.
  • Moss, M.L. 1968. Bone, dentin, and enamel and the evolution of vertebrates. In: P. Person (ed.), Biology of the Mouth, 37–65. American Association of Advancement of Science, Washington, DC.
  • Neave, F. 1936. The development of the scales of Salmo. Transactions of the Royal Society Canada 5: 55–72.
  • Nickerson, W.S. 1893. The development of the scales of Lepidosteus. Bulletin of the Museum of Comparative Zoology, Harvard 24: 115–139.
  • Ørvig, T. 1957. Paleohistological notes. On the structure of the bone tissue in the scales of certain Palaeonisciformes. Arkiv för Zoologi 10: 481–490.
  • Ørvig, T. 1967. Phylogeny of tooth tissues: evolution of some calcified tissues in early Vertebrates. In: A.E.W. Miles (ed.), Structural and Chemical Organization of Teeth. Volume I, 45–110. Academic Press, New York.
  • Ørvig, T. 1968. The dermal skeleton: general consideration. In: T. Ørvig (ed.), Current Problems of Lower Vertebrate Phylogeny, 373–397. Almquist and Wiksell, Stockholm.
  • Ørvig, T. 1977. A survey of odontodes (‘dermal teeth’) from development structural, functional, and phyletic point of view. In: E.D. Andrews, R.S. Miles, and A.D. Walker (eds.), Problems in Vertebrate Evolution. Linnean Society Symposium Series, Volume 4, 53–75. Academic Press, London.
  • Ørvig, T. 1978. Microstructure and growth of the dermal skeleton in fossil actinopterygian fishes: Birgeria and Scanilepis. Zoologica Scripta 7: 33–56.
  • Patterson, C. 1982. Morphology and interrelationships of primitive actinopterygian fishes. American Zoologist 22: 241–259.
  • Pearson, D.M. 1982. Primitive bony fishes, with especial reference to Cheirolepis and palaeonisciform actinopterygians. Zoological Journal of the Linnean Society 74: 35–67.
  • Pearson, D.M. and Westoll, T.S. 1979. The Devonian actinopterygian Cheirolepis Agassiz. Transaction of the Royal Society of Edinburgh 70: 337–399.
  • Poole, D.F.G. 1967. Phylogeny of tooth tissues; enameloid and enamel in recent Vertebrates, with a note on the history of cementum. In: A.E.W Miles (ed.), Structural and Chemical Organization of Teeth. Volume I, 111–149. Academic Press, New York.
  • Poplin, C., Wang, N.C., Richter, M., and Smith, M. 1991. An enigmatic actinopterygian (Pisces: Osteichthyes) from the Upper Permian of China. Zoological Journal of the Linnean Society 103: 1–20.
  • Qu, Q., Sanchez, S., Blom, H., Tafforeau, P., and Ahlberg, P.E. 2013 Scales and tooth whorls of ancient fishes challenge distinction between external and oral teeth. PlosOne 8: 1–8.
  • Reed, J. W. 1992. The actinopterygian Cheirolepis from the Devonian of Red Hill, Nevada, and its implications for acanthodian – actinopterygian relationships. In: E. Mark-Kurik (ed.), Fossil Fishes as Living Animals, 243–250. Academy of Science of Estonia, Talinn.
  • Reif, W.E. 1978. Protective and hydrodynamic function of the dermal skeleton of elasmobranches. Neues Jarbuch für Geologie und Paläontologie 157: 133–141.
  • Reif, W.E. 1982. Evolution of dermal skeleton and dentition in Vertebrates. In: M.K. Hecht, B. Wallace, and G.T. Prance (eds.), The Odontode Regulation Theory. Evolution Biology 15: 287–368.
  • Richter, M. and Smith, M. 1995. A microstructural study of the ganoine tissue of selected lower vertebrates. Zoological Journal of the Linnean Society 114: 173–212.
  • Sanchez, S., Ahlberg, P.E., Trinajstic, K.M., Mirone A., and Tafforeau P. 2012. Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microscopy and Microanalysis 18: 1095–1105.
  • Sasagawa, I., Ishiyama, M., Yokosuka, H., and Mikami, M. 2013. Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: An approach to understand the origin of tooth enamel. Journal of Oral Biosciences 55: 76–84.
  • Sasagawa, I., Ishiyama, M., Yokosuka, H., Mikami, M., Shimokawa, H., and Uchida, T. 2014. Immunocytochemical and western blot analyses of collar enamel in the jaw teeth of gars, Lepisosteus oculatus, an actinopterygian fish. Connective Tissue Research 55: 225–233.
  • Sasagawa, I., Yokosuka, H., Ishiyama, M., and Uchida, T. 2007. Fine structural and immunocytochemical observations on collar enamel and ganoine in Polypterus, an actinopterygian fish. European Cells and Materials 14 (Supplement 2): 127.
  • Schaeffer, B. 1977. The dermal skeleton in fishes. In: R.S. Miles, A.D. Walker, and S.M. Andrews (eds.), Problems in Vertebrate Evolution. Linnean Society Symposium Series, Volume 4, 25–52. Academic Press, London.
  • Schönbörner, A.A., Boivin, G., and Baud, C. 1979. The mineralization processes in teleost fish scales. Cell Tissue Research 202: 203–212.
  • Schultze, H.-P. 1966. Morphologische und histologische Untersuchungen an Schuppen mesozoischer Actinopterygier (Übergang von ganoid-zu-Rundschuppen). Neues Jahrbuch Geologie Paläontologie 126: 232–314.
  • Schultze, H.-P. 1968. Palaeoniscoidea-Schuppen aus dem Unterdevon Australiens und Kanadas und aus dem Mittledevon Spitzbergens. Bulletin of the British Musem (Natural History) Geology 16: 343–368.
  • Schultze, H.-P. 1977. Ausgansform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). Paläontologische Zeitschrift 51: 152–168.
  • Schultze, H.-P. 1992. Early Devonian actinopterygians (Osteichthyes, Pisces). In: E. Mark-Kurik (ed.), Fossil Fishes as Living Animals, 233–242. Academy of Science of Estonia, Talinn.
  • Schultze, H.-.P. and Arratia, G. 1989. The composition of the caudal skeleton of teleosts (Actinopterygii: Osteichthyes). Zoological Journal of the Linnean Society 97: 189–231.
  • Schultze, H.-P. and Cumbaa, S.L. 2001. Dialipina and the characters of basal actinopterygians. In: P.E. Ahlberg (ed.), Major Events in Early Vertebrate Evolution. Palaeontology, Phylogeny, Genetics and Development. Systematics Association, Special Volume 61: 315–332.
  • Schultze, H.-P. and Märss, T. 2004. Revisiting Lophosteus, a primitive osteichthyan. Acta Universitatis Latviensis 679: 57–78.
  • Sewertzoff, A.N. 1924. The development of the dorsal fin of Polypterus delhesi. Journal of Morphology 38: 551–580.
  • Sewertzoff, A.N. 1932. Die Entwicklungen der Knochenschuppen von Polypterus delhesi. Jenaische Zeitschrift für Naturwissenschaft 67: 387–418.
  • Sire, J.-Y. 1990. From ganoid to elasmoid scales in the Actinoptrygians. Netherlands Journal of Zoology 40: 75–92.
  • Sire, J.-Y. 1994. Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation. Anatomical Record 240: 189–207.
  • Sire, J.-Y. and Akimenko, M.-A. 2004. Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish. International Journal of Developmental Biology 48: 233–247.
  • Sire, J.-Y., Géraudie, J., Meunier, F.J., and Zylberberg, L. 1986. Participation des cellules épidermiques à la formation de la ganoïne au cours de la régénération expérimentale des écailles de Calamoichthys calabaricus (Smith, 1886) (Polypteridae, Ostéichthyens). Comptes Rendus de l’Académie des Sciences, Série III, Sciences de la vie/Life sciences 303: 625–628.
  • Sire, J.-Y., Géraudie, J., Meunier, F.J., and Zylberberg, L. 1987. On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteich thyes, Brachyopterygii, Polypteridae). American Journal of Anatomy 180: 391–402.
  • Smith, M. 1992. Microstructure and evolution of enamel amongst osteichthyan fishes and early tetrapods. In: P. Smith and E. Tchernov (eds.), Structure, Function, and Evolution of Teeth, 73–101. Freund, Tel Aviv.
  • Smith, M. 1995. Heterochrony in the evolution of enamel in vertebrates. In: K.J. McNamara (ed.), Evolutionary Change and Heterochrony, 125–150. Wiley, Chichester.
  • Swartz, B.A. 2009. Devonian actinopterygian phylogeny and evolution based on a redescription of Stegotrachelus finlayi. Zoological Journal of the Linnean Society 156: 750–784.
  • Tischlinger, H. and Arratia, G. 2013. Ultraviolet light as a tool for investigating Mesozoic fishes, with a focus on the ichthyofauna of the Solnhofen archipelago. In: G. Arratia, H.-P. Schultze, and M.V.H. Wilson (eds.), Mesozoic Fishes, 549–560. Dr. Friedrich Pfeil, München.
  • Traquair, R.H. 1875. On the structure and systematic position of the genus Cheirolepis. Annals and Magazine of Natural History 15: 237–249.
  • Vorob’eva, E.I. 2012. Processes of scale formation in fish and Agnatha. Biological Bulletin 39: 99–109.
  • Wainwright, S.A. 1983. To bend a fish. In: P.W. Webb and D. Weihs (eds.), Fish Biomechanics, 68–91. Praeger, New York.
  • Webb, P.W. 1978. Hydrodynamique et énergétique de la propulsion des poissons. Bulletin de l’Office des Recherches sur les Pêcheries du Canada 190: 1−160.
  • Webb, P.W. 1980. Function of the caudal fin in early fishes. Copeia 3: 559–562.
  • Whiteaves, J.F. 1881. On some remarkable fossil fishes from the Devonian Rocks of Scaumenac Bay, Province of Quebec with description of a new genus and three new species. Canadian Naturalist 10: 27–35.
  • Whiteaves, J.F. 1889. Illustration of the fossil fishes of the Devonian rocks of Canada. Part II. Proceedings and Transactions of the Royal Society of Canada, Sect. 4 6: 77–96.
  • Williamson, W.C. 1849. On the microscopic structure of the scales and dermal teeth of some ganoid and placoid fish. Philosophical Transactions of the Royal Society of London 139: 435–475.
  • Wood, A. 1982. Pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifish Aphyosemion scheeli. Anatomical Record 204: 349−356.
  • Zhang, J.Y. 2012. New species of Sinamia from western Liaoning, China. Vertebrata PALAsiatica 10: 322−334.
  • Zhang, J.Y., Wagh, P., Guay, D., Sanchez-Pulido, L., Padhi, L., Korzh, V., Andrade-Navarro, M.A., and Akimenko, M.-A. 2010. Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466: 234–237.
  • Zhu, M., Yu, X., and Janvier, P. 1999. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397: 607–610.
  • Zhu, M., Yu, X., Wang, W., Zhao, W., and Jia, L. 2006. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441: 77–80.
  • Zylberberg, L. and Meunier, F.J. 2013. A revisited histological study of the fin-rays of Polypterus senegalus (Cladistia, Polypteridae). Comptes Rendus Palevol 12: 203–210.
  • Zylberberg, L., Géraudie, J., Meunier, F.J., and Sire, J.-Y. 1992. Biomineralization in the integumental skeleton of the living lower vertebrates. In: B.K. Hall (ed.), Bone. Vol. 4 Bone Metabolism and Mineralization, 171–224. CRC Press, Inc., Boca Raton.
  • Zylberberg, L., Géraudie, J., Sire, J.-Y., and Meunier, F.J. 1985. Mise en évidence ultrastructurale d’une couche organique entre l’épiderme et la ganoïne du dermosquelette des Polyptéridés. Comptes Rendus de l’Académie des Sciences, Série III, Sciences de la vie/Life sciences 301: 517–522.
  • Zylberberg, L., Meunier, F.J., and Laurin, M. 2010. A microanatomical and histological study of the postcranial dermal skeleton in the Devonian sarcopterygian Eusthenopteron foordi. Acta Palaeontologica Polonica 55: 459–470.
  • Zylberberg, L., Sire, J.-Y., and Nanci, A. 1997. Immunodetection of amelogenin-like proteins in the ganoine of experimentally regenerating scales of Calamoichthys calabaricus, a primitive actinopterygian fish. Anatomical Record 249: 86–95.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d91bb960-b4f4-4286-b19d-3545e5ec6d4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.