PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Photocatalytic activity of Al2O3.Fe2O3 synthesized by ultrasonic-assisted mechanical stirring

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water pollution has been a prime concern for scientists for decades. Different treatment methods have been suggested by different researchers, with photocatalysis emerging as an efficient method for treating industrial textile wastewater. This study is designed to synthesize a nano-photocatalyst for the degradation of two synthetic dyes. The Al₂O₃.Fe₂O₃ nano-photocatalyst was synthesized by a novel technique: ultrasonic-assisted mechanical stirring and synthesized photocatalyst characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) analysis, dynamic light scattering, and BET surface area analysis. The Al₂O₃.Fe₂O₃ nano-photocatalyst was tested for its potential to degrade methyl orange and methylene blue dyes. Important influencing parameters (pH, catalyst dose, initial dye concentration, and reaction time) have been optimized during the dye degradation process. The highest degradation for methyl orange (39%) and methylene blue (45%) was achieved by using 60 mg/100 mL catalyst dose and 120 minutes of reaction time at room temperature. The study results indicated that Al₂O₃.Fe₂O₃ nano-photocatalyst has good potential for the removal of dyes from industrial effluents.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2777-2783,fig.

Twórcy

autor
  • Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
autor
  • Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
autor
  • Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
autor
  • Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan

Bibliografia

  • 1. Saha P.D., Chowdhury S., Mondal M., Sinha K. Biosorption of Direct Red 28 (Congo red) from aqueous solutions by eggshells: batch and column studies. Sep. Sci. Technol. 47, 112, 2012.
  • 2. Sadaf S., Bhatti H.N., Nausheen S., Amin M. Application of a novel lignocellulosic biomaterial for the removal of Direct Yellow 50 dye from aqueous solution: Batch and column study. J. Taiwan Inst. Chem. Eng. 47, 160, 2015.
  • 3. Akar T., Anilan B., Gorgulu A., Akar S.T. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: pyracantha coccinea berries. J. Hazard. Mater. 168, 1302, 2009.
  • 4. Hsueh C.L., Huang Y.H., Wang C.C., Chen C.Y. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere. 58, 1409, 2005.
  • 5. Mittal A., Gupta V.K., Malviya A., Mittal J. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J. Hazard. Mater. 151 (2–3), 821, 2008.
  • 6. Madhavan J., Grieser F., Ashokkumar M. Degradation of orange-G by advanced oxidation processes. Ultrason. Sonochem. 17, 338, 2010.
  • 7. Forgacs E., Cserhati T., Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953, 2004.
  • 8. Janus M., Morawski A.W. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Appl. Catal. B Environ. 75, 118, 2007.
  • 9. McManamon C., Holmes J.D., Morris M.A. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO₂-doped TiO₂ nanoparticulate powders. J. Hazard Mater. 193, 120, 2011.
  • 10. Karimi L., Zohoori S., Yazdanshenas M.E. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc. 18, 581, 2014.
  • 11. Vinu R., Akki S.U., Madras G. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO₂. J. Hazard. Mater. 176, 765, 2010.
  • 12. Chen C.Y. Photocatalytic degradation of azo dye reactive orange 16 by TiO₂. Water Air Soil Pollut. 202, 335, 2009.
  • 13. Tokmakci T., Ozturk A., Park J. Boron and zirconium co-doped TiO₂ powders prepared through mechanical ball milling. Ceramic Inter. 39, 5893, 2013.
  • 14. Ashkarran A.A., Afshar S.A.A., Aghigh S.M. Photocatalytic activity of ZrO₂ nanoparticles prepared by electrical arc discharge method in water. Polyhedron. 29, 1370, 2010.
  • 15. Guan B., Wang T., Zeng S., Wang X., An D., Wang D., Cao Y., Ma D., Liu Y., Huo Q. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano. Res. 7, 246, 2014.
  • 16. Jiang W., He J., Zhong J., Lu J., Yuan S., Liang B. Preparation and photocatalytic performance of ZrO₂ nanotubes fabricated with anodization process. Appl. Surf. Sci. 307, 407, 2014.
  • 17. Ghiaci M., Aghaei H., Abbaspur A. Size-controlled synthesis of ZrO₂–TiO₂ nanoparticles prepared via reverse micelle method: investigation of particle size effect on the catalytic performance in vapor phase Beckmann rearrangement. Mater. Res. Bullet. 43, 1255, 2008.
  • 18. Rani S., Kumar M., Sharma S., Kumar D., Tyagi S. Effect of graphene in enhancing the photo catalytic activity of zirconium oxide. Catalysis letters. 144, 301, 2014.
  • 19. Ullah I., Ali S., Hanif M.A., Zia M.A. Synthesis and Photocatalytic Efficiency of Sunlight Driven Novel Ternary Metal Oxide Nanophotocatalyst. Asian J. Chem. 27, 1189, 2015.
  • 20. Shahid M., Shakir I., Yang S.J., Kang D.J. Facile synthesis of core – shell SnO₂/V₂O₅ nanowires and their efficient photocatalytic property. Mater. Chem. Phy. 124, 619, 2010.
  • 21. Guillard C., Lachheb H., Houas A., Ksibi M., Elaloui E., Herrmann J.M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO₂ comparison of the efficiency of powder and supported TiO₂. J. Photochem. Photobiol. A: Chem. 158 (1), 27, 2003.
  • 22. Chakrabarti S., Dutta B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112 (3), 269, 2004.
  • 23. Talebian N., Nilforoushan M. Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films. 518 (8), 2210, 2010.
  • 24. Sultana, S., Khan M.Z., Shahadat M. Development of ZnO and ZrO₂ nanoparticles: Their photocatalytic and bactericidal activity. J. Environ. Chem. Eng. 3 (2), 886, 2015.
  • 25. Kaur J., Bansal S., Singhal S. Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B: Condensed Matter. 416, 33, 2013.
  • 26. Ku Y., Hsieh C.B. Photocatalytic decomposition of 2, 4-dichlorophenol in aqueous TiO₂ suspensions. Water research. 26 (11), 1451, 1992.
  • 27. Al-Qaradawi, S., Salman S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A: Chem. 148 (1), 161, 2002.
  • 28. Sarasidis V.C., Plakas K.V., Patsios S.I., Karabelas A.J. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chem. Eng. J. 239, 299, 2014.
  • 29. Wang X., Zhang L., Lin H., Nong Q., Wu Y., Wu T., He Y. Synthesis and characterization of a ZrO₂/gC₃N₄ composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv. 4 (75), 40029, 2014.
  • 30. Shirsath S., Pinjari D., Gogate P., Sonawane S., Pandit A. Ultrasound assisted synthesis of doped TiO₂ nano-particles: Characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrasonic sonochem. 20 (1), 277, 2013.
  • 31. Swetha S., Balakrishna R.G. Preparation and characterization of high activity zirconium-doped anatase titania for solar photocatalytic degradation of ethidium bromide. Chinese J. Catal. 32 (5), 789, 2011.
  • 32. McKay G., Ho Y.S. The sorption of lead(II) on peat. Water Res. 33, 578, 1999.
  • 33. Hameed B.H. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater. 162, 939, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d8b8c30e-f605-4a98-923e-581c7619789c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.