PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |

Tytuł artykułu

Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.) obtained by in vitro propagation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In vitro coffee seedlings were exposed to an electromagnetic field (EMF) of 2 mT during 3 minutes in establishment, multiplication, and acclimazation phases. Shoot and root lengths and leaf pair numbers of treated groups increased when compared to control; in addition to SOD, CAT, and APX activities of in vitro-treated groups showed a decrease in levels. Four months after the magnetic treatment was applied, the same parameters were evaluated. Shoot lengths, root lengths, the pair of leaves numbers, and CAT activity increased in treated plants. APX activity decreased in treatment seedlings, whereas SOD activity did not show a difference between experimental groups.

Wydawca

-

Rocznik

Tom

23

Numer

1

Opis fizyczny

p.95-101,fig.,ref.

Twórcy

autor
  • Department of Bioelectromagnetism, Nacional Centre of Applied Bioelectromagnetism, Apartado 4078, CP 90400, Santiago de Cuba, Cuba
autor
  • Department of Tissue Culture, Centre of Bioplants, Km 9. Carretera Moron, Ciego de Avila, Cuba
autor
  • Department of Bioelectromagnetism, Nacional Centre of Applied Bioelectromagnetism, Apartado 4078, CP 90400, Santiago de Cuba, Cuba
  • Department of Tissue Culture, Centre of Bioplants, Km 9. Carretera Moron, Ciego de Avila, Cuba
  • Laboratory of Plant Molecular Physiology, Department of Biology, Federal University of Lavras, Campus Universitario, Lavras, Minas Gerais, Brasil

Bibliografia

  • 1. KWEE S., RASKMARK P., VELIZAROV S. Changes in cellular proteins due to environmental non-ionizing radiation. I. Heat shock proteins. Electro Magnetobiol. 20, 141, 2001.
  • 2. DE POMERAI DI., DANIELLS C., DAVID H., ALLAN J., DUCE I., MUTWAKIL M., THOMAS D., SEWELL P., TATTERSALL J., JONES D., PETER E., CANDIDO M. Microwave radiation can alter protein conformation without bulk heating. FEBS 543, 93, 2003.
  • 3. TKALEC M., MALARIC K., PEVALEK-KOZLINA, B. Influence of 400, 900, and 1900MHz Electromagnetic Fields on Lemna minor Growth and Peroxidase Activity, Bioelectromagnetics, 26, 185, 2005.
  • 4. TKALEC M., MALARIC K., PEVALEK-KOZLINA B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L., Sci. Total Environ. 338, 78, 2007.
  • 5. SCAIANO J.C., COZENS F.L., MCLEAN J. Model for the rationalization of magnetic field In vivo. Application of the radical pair mechanism to biological systems. Photochem Photobiol. 59, 585, 1994.
  • 6. LI S.H., CHOW K.C. Magnetic field induces DNA degradation. Biochem. Bioph. Res Co. 280, 1385, 2001.
  • 7. DAT J.F., VAN MONTAGU M., INZE D., VAN BREUSEGEM F. Catalase deficient tobacco plants: Tools for in plant a studies on the role of hydrogen peroxide. Redox Rep. 6, 37, 2001.
  • 8. HIROTA N., NAKAGAWA J., KOICHI K. Effects of a magnetic field on the germination of plants. J. Appl. Physiol. 85, 5717, 2003.
  • 9. YANO A., HIDAKA E., FUJIWARA K., IIMOTO M. Induction of primary root curvature in radish seedlings in a static magnetic field. Bioelectromagnetics. 22, 194, 2001.
  • 10. YANO A., OHASHI Y., HIRASAKI T., FUJIWARA K. Effects of a 60 Hz magnetic field on photosynthetic CO₂ uptake and early growth of radish seedlings. Bioelectromagnetics. 25, 572, 2004.
  • 11. SAHEBJAMEL H., ABDOLMALEKI P., GHANATI F. Effects of magnetic filed on the antioxidante enzyme activities of suspension-cultures toabcco cells. Biolectromagnetics 28, 42, 2007.
  • 12. MARTĺNEZ E., FLÓREZ M., MAQUEDA R., CARBONELL M.V., AMAYA J.M. Pea (Pisum sativum, L.) and lentil (Lens culinaris, Medik) growth stimulation due to exposure to 125 and 250 mt stationary fields. Pol. J. Environ. Stud. 18, (4), 657, 2009.
  • 13. CELIK Ö., BÜYÜKUSLU N., ATAK C., RZAKOULIEVA A. Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots. Pol. J. Environ. Stud. 18, (2), 175, 2009.
  • 14. ALIKAMANOGLU S., SEN A. Stimulation of growth and some biochemical parameters by magnetic field in wheat (Triticum aestivum L.) tissue cultures. African Journal of Biotechnology 10, (53), 10957, 2011.
  • 15. SANTOS C., PAIVA R., PAIVA P., PAIVA E. Induction and biochemical analysis of callus from leaf segments of Coffea arabica L., Cultivar Rubi. Cienc. Agrotec. 27, (3), 571, 2003.
  • 16. DE LA CRUZ G., ESTRADA S., OROZCO S., LABRADA P. M. Methodology to micropropagate and biochemical identification of coffee plants varieties. 1ra ed. Publicaciones Instituto Jorge Domitrov. Bayamo. Granma, Cuba. pp. 61.1992.
  • 17. MURASHIGE T., SKOOG F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473, 1962.
  • 18. SCHWANZ P., POLLE A. Growth under elevated CO₂ ameliorates defenses against photo-oxidative stress in poplar (Populus alba × tremula). Environ. Exp. Bot. 45, 43, 2001.
  • 19. DHINDSA R.S., PLUMB-DHINDSA P., THORPE T.A. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93, 1981.
  • 20. AZEVEDO R.A., ALAS R.M., SMITH R.J., LEA P.J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 104, 280, 1998.
  • 21. NAKANO Y., ASADA K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant. Cell Physiol. 22, 867, 1981.
  • 22. BRADFORD M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 23. ROCHALSKA M., ORZESZKO-RYWKA A. Magnetic field treatment Orzeszko-Rywka, improves seed performance. Seed Sci. Technol. 33, 669, 2005.
  • 24. DE SOUZA A., GARCIA D., SUEIRO L., GILART E., PORRAS E., LICEA L. Pre-sowing magnetic treatment of tomato seeds increase the growth and yield of plants. Biolelectromagnetics. 27, 247, 2006.
  • 25. CAKMAK T., DUMLUPINAR R., ERDAL S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31, 120, 2010.
  • 26. BELYAVSKAYA N.A., FOMICHEVA V.M., GOVOROUN R.D., DANILOV I. Structural-functional organization of the meristem cells of pea, lentil and flax roots in conditions of screening the geomagnetic field. Biophysics, 37, 657, 1992.
  • 27. FOMICHEVA V.M., GOVOROUN R.D., DANILOV I. Ploriferative activity and cell reproduction in the root meristems of the pea, lentil and flax in the conditions of screening the geomagnetic field. Biophysics. 37, 645, 1992.
  • 28. PAUL A.L., FERL R.J., MEISEL M.W. Height magnetic field induced changes gene expression in Arabidopsis. BioMagn. Res. Technol. 4, 1, 2006.
  • 29. LUCCHESINI M., SABARINI A.M., VITAGLIANO C., DARIO P., HAYASHI M., KANO A., GOTO E. The pulsed electro-magnetic field stimulation effect on development of Prunus cerasifera in vitro derived plantlets. Acta Horticult. 319, 31, 1992.
  • 30. YAYCILI O., ALIKAMANOGLU S. The effect of magnetic field on Paulownia tissue culture. Plant. Cell Tiss. Org. 83, 109, 2005.
  • 31. ISAAC E., HERNÁNDEZ C., DOMÍNGUEZ A. ORNETA A. Effect of pre-sowing electromagnetic treatment on seed germination and seedling growth of maize (Zea mays L.). Agronomia Colombiana 29, (2), 213, 2011.
  • 32. GALLAND P., PAZUR A. Magnetoreception in plants. J. Plant Res. 118, 371, 2005.
  • 33. URSACHE M., MINDRU G., CREANGĂ E., TUFESCU F.M., GOICEANU C. The effects of high frequency electromagnetic waves on the vegetal organisms. Rom. J. Phys. 54, (1-2), 133, 2009.
  • 34. ISAAC E., FERRER A., FUNG Y. Effect of the application of an electromagnetic field on the content of soluble proteins and carbohydrates from in vitro cultivated Coffea arabica zygotic embryos. Biotecnologia Vegetal 10, (1) 53, 2010.
  • 35. BARNES F. S. Effect of electromagnetic fields on the rate of chemical reactions Biophysics 41, (4),790, 1996.
  • 36. WALISZEWSKI P., SKWAREK R., JEROMIN L., MINIKOWSKI H. On themitochondrial aspect of reactive oxygen species action in external magnetic fields. J Photochem Photobiol B. 52, 137, 1999.
  • 37. PIACENTINI M.P., FRATERNALE D., PIATTI E., RICCI D., VETRANO F. Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedling by ELF magnetic fields. Plant Sci. 161, 45, 2001.
  • 38. KOZAI T., KUBOTA C., ZOBAYED S.M.A., NGUYEN Q.T., AFREEN-ZOBAYED F., HEO J. Photoautotrophic (Sugar-free medium) micropropagation. Proc. of Workshop on Contamination and Acclimatization. Management in Plant Cell and Tissue Culture. pp. 5, 2000.
  • 39. PREECE J.E., SUTTER E.G. Acclimatization in micropropagated plants to the greenhouse and field. In: Debergh PC, Zimmerman RH (Eds). Micropropagation. Kluwer. Academic publishers. pp. 71-73, 1991.
  • 40. ASADA K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391, 2006.
  • 41. GRISSOM B. Magnetic field effects in biology: A survey of possible mechanism with emphasis on radical-pair recombination. Chem. Rev. 95, 3, 1995.
  • 42. DE CERTAINES J.D. Molecular and cellular responses to orientation effects in static and homogeneus ultra high magnetic fields. Amn. Ny Acod-Sci. 649, 35, 1992.
  • 43. VAN D.B., CARPENTER J.K.H., HOFF A.J, HORE P.L. Magnetic field effects on the recombination kinetics of radical pairs. J. Phys. Chem. 102, 464, 1998.
  • 44. VAN BREUSEGEM F., VRANOVA E., DAT J. F., INZE D. The role of oxygen species in plant signal transduction. Plant Sci. 161, 405, 2001.
  • 45. ALSCHER G., ERTURK N., EATH L. S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, (372), 1331, 2002.
  • 46. MALENČIĆ D. J., POPOVIĆ M., MILADINOVIĆ J. Stress tolerance parameters in different genotypes of soybean. Biol. Plant. 46, (1), 141, 2003.
  • 47. STEINER U, URLICH T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, (1), 51, 1989.
  • 48. ZMYŚLONY M., POLITANSKI P., RAJKOWSKA E., SZYMCZAK W., JAJTE J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics. 25, (5), 324, 2004.
  • 49. MANNERLING A.C., SIMKO M., MILD K.H, MATTSSON M.O. Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys. 49, (4), 731, 2010.
  • 50. TIMMEL C.R., TILL U., BROCKLEHURST B., MCLAUCHLAN K.A., HORE P.J. Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 95, 71, 1998.
  • 51. CINTOLESI F., RITZ T., KAY C.W.M, TIMMEL C.R., HORE P.J. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-mu T magnetic field: a model avian photomagnetoreceptor. Chem. Phys. 294, 385, 2003.
  • 52. SOLOV’YOV I.A., SCHULTEN K. Magnetoreception through Cryptochrome May Involve Superoxide. Biophys. J. 96, 4804, 2009.
  • 53. FOMICHEVA V.M., GOVOROUN R.D., DANILOV I. Ploriferative activity and cell reproduction in the root meristems of the pea, lentil and flax in the conditions of screening the geomagnetic field. Biophysics, 37, 645, 1992.
  • 54. GRUNDLER W., KAISER F., KEILMANN F., WALLECZEK J. Mechanisms of the electromagnetic interaction with cellular systems. Naturwissenschaften. 79, 551, 1992.
  • 55. TAIZ L., ZEIGER E. Plant Physiology, 4th ed, Sinauer Associates Inc. Massachussets. pp. 80-83, 2006.
  • 56. RUZIC R., JERMAN I. Weak magnetic field decreases heat stress in cress seedlings. Electromag. Biol. Med. 21, (1), 69, 2002.
  • 57. YINAN Y., YUAN L., YONGQING Y., CHUNYANG L. Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environ. Exp. Bot. 54, 286, 2005.
  • 58. ALIKAMANOGLU S., YAYCILI O., ATAK C., RZAKOULIEVA A. Effect of magnetic field and gamma radiation on Paulownia tomentosa tissue culture. Biotechnol. Eq. 21, (1), 49, 2007.
  • 59. MAHESHWARI B.L., GREWAL H.S. Magnetic treatment of irrigation water. Its effects on vegetable crop yield and water productivity. Agric. Water Manage. 96, 1229, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d8832ca1-ffc5-4343-9065-6f55f1d8f1a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.