PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 1 |

Tytuł artykułu

Response of Ornithogalum saundersiae Bak. to salinity stress

Treść / Zawartość

Warianty tytułu

PL
Reakcja Ornithogalum saundersiae Bak. na stress solny

Języki publikacji

EN

Abstrakty

EN
Most of the studies on the effects of salinity stress are conducted on ornamental bedding plants and perennials but little is known on flower bulbs response to this stress factor. Ornithogalum saundersiae is an attractive bulbous plant recommended for growing in pots, gardens and green areas. The study conducted in the years 2013–2014 investi-gated the effects of NaCl on the growth, flowering, photosynthetic activity, pigment content, and macro- and micronutrient content in the leaves of O. saundersiae. The plants were grown in pots in a plastic tunnel. NaCl was applied once a week for six weeks at concentration of 100 mM or 200 mM. The salt treatment did not cause chlorosis and did not affect flowering rate and number of inflorescences. The plants exposed to salinity stress had lower fresh weight of leaves, inflorescences and bulbs and their flowering be-gan later than in the control plants. Photosynthesis and transpiration intensity decreased as NaCl concentration increased. The content of chlorophyll and carotenoids in NaCl treated plants was significantly higher than in the control plants. Salinity stress increased the leaf content of nitrogen, potassium, sodium and chlorine and reduced the concentration of calcium, zinc and iron.
PL
Większość badań nad wpływem warunków stresowych wynikających z zasolenia prowadzi się na ozdobnych roślinach rabatowych i bylinach, natomiast wciąż niewiele jest informacji dotyczących reakcji geofitów na ten czynnik. Ornithogalum saun-dersiae to atrakcyjna roślina cebulowa polecana do uprawy w pojemnikach, w ogrodach i na terenach zieleni. Przeprowadzone w latach 2013–2014 badania dotyczyły oceny wpływu NaCl na wzrost, kwitnienie, funkcjonowanie aparatu fotosyntetycznego, zawartość barwników oraz makro- i mikroskładników w liściach O. saundersiae. Rośliny uprawiano w doniczkach w tunelu foliowym. Zasalanie prowadzono raz w tygodniu, przez okres 6 tygodni, stosując roztwór NaCl w stężeniu 100 i 200 mM. Stwierdzono, że traktowanie roślin NaCl nie spowodowało chloroz, nie miało wpływu na procent kwitnących roślin oraz na liczbę kwiatostanów. Pod wpływem stresu solnego rośliny miały zmniejszonąświeżą masę liści, kwiatostanów i cebul oraz rozpoczynały później kwitnienie. Intensywność fotosyntezy i natężenie transpiracji zmniejszyło się wraz ze wzrostem stężenia NaCl. Zawartość chlorofilu i karotenoidów w liściach roślin traktowanych NaCl była istotnie wyższa w porównaniu z roślinami kontrolnymi. W wyniku zasolenia wzrosła zawartość w liściach azotu, potasu, sodu i chloru, natomiast spadła zawartość wapnia, cynku i żelaza.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.123-134,fig.,ref.

Twórcy

autor
  • Department of Horticulture, West Pomeranian University of Technology in Szczecin, Papieza Pawla VI 3, 71-459 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Szczecin, Poland

Bibliografia

  • Acosta-Motos, J.R., Alvarez, S., Barba-Espin, G., Hernandez, J.A., Sanchez-Blanco, M.J. (2014). Salts and nutrients present in regenerated waters induce changes in water relations, antioxida-tive metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant Physiol. Biochem., 85, 41–50.
  • Aidesuquy, H.S. (1992). Growth and pigment content of wheat as influenced by the combined effects of salinity and growth regulators. Biol. Plant., 34(3–4), 275–283.
  • Arnon, D.J., Allen, M.B., Whatley, F. (1956). Photosyntesis by isolated chloroplast. Bioch. Bio-phys. Acta, 20, 449–461
  • Bãnón, S., Miralles, J., Ochoa, J., Franco, J.A., Sánchez-Blanco, M.J. (2011). Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants. Sci. Hortic., 129, 869–876.
  • Bernstein, L., Francois, L.E., Clark, R.A. (1972). Salt tolerance of ornamental shrubs and ground covers. J. Amer. Soc. Hort. Sci., 97, 550–556.
  • Breś, W., Kupska, A., Trelka, T. (2014). Response of scarlet sage and common sunflower plants to salinity caused by sodium salts. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech., 315(32), 5–14.
  • Brugnoli, E., Björkman, O. (1992). Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta, 187(3), 335–47
  • Carter, C.T., Grieve, C.M. (2006). Salt tolerance of floriculture crops. In: Ecophysiology of high salinity tolerant plants, Khan, M.A., Weber, D.J. (ed.). Springer, Netherlands, 279–287.
  • Cassaniti, C., Romano, D., Hop, M.E.C.M., Flowers, T.J. (2013). Growing floricultural crops with brackish water. Environ. Exp. Bot., 92, 165–175.
  • Chaves, M.M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regu-lation mechanisms from whole plant to cell. Ann. Bot., 103, 551–56
  • De Hertogh, A.A., Le Nard, M.(1993). Ornithogalum. In: The physiology of flower bulbs. El-sevier, Amsterdam, 761–764.
  • Duncan, G.D. (2013). Geophyte research and production in South Africa. In: Ornamental geo-phytes: From basic science to sustainable production, Kamenetsky, R., Okubo, H. (eds). Taylor and Francis Group LLC, Boca Raton, p. 487.
  • Grieve, A.M., Walker, R.R. (1983). Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. Aust. J. Agric. Res., 34, 133–143.
  • Grieve, C.M., Poss, J.A. (2010). Response of ornamental sunflower cultivars ‘Sunbeam’ and ‘Moonbright’ to irrigation with saline wastewaters. J. Plant Nutr., 33, 1579–1592.
  • Hager, A., Mayer-Berthenrath, T. (1966). Die isolierung und quanttative bestimung der carote-noide und chlorophyll von blatern, algen und isolierten chloroplasten mit hilfe dunn-schichtchromatographischer methoden. Planta, 69, 198–217.
  • Hamada, A. M,. El-Enany, A.E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant., 36(1), 75–81.
  • Haouala, F., Sahli, I. (2011). NaCl effects on growth, flowering and bulbing of gladiolus (Gladio-lus grandiflorus Hort.). Rev. Suisse Vitic. Arboric. Hortic., 43(6), 378–383.
  • Helal, H.M, Mengel, K. (1979). Nitrogen metabolism of young barley plants as affected by NaCl-salinity and potassium. Plant Soil, 51, 457–462.
  • Kariuki, W., Kako, S. (1999). Growth and flowering of Ornithogalum saundersiae Bak. Sci. Hortic., 81(1), 57–70.
  • Koksal, N., Kulahlioglu, I., Ertargin, E., Torun, A.A. (2014). Relationship between salinity stress and ion uptake of hyacinth (Hyacinthus orientalis). Turk. J. Agr. Nat. Sci., 1, 578–583.
  • Lee M.K., van Iersel, M.W. (2008). Sodium chloride effects on growth, morphology, and physi-ology of chrysanthemum (Chrysanthemum × morifolium). HortScience, 43(6), 1888–1891.
  • Lichtenthaler, H.K., Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critic. Rev. Anal. Chem., 19(1), 29–85.
  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). Academic Press, New York. Niu, G., Cabrera R.I. (2010). Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience, 45(11), 1605–1609.
  • Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Procedures for soil and plants analysis. Inst. Environ. Prot. Warsaw [in Polish]
  • Parida, A.K., Das, A.B., Mittra, B. (2004). Effects of salt on growth, ion accumulation photosynthe-sis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct. Funct., 18, 167–174.
  • Salachna, P. (2014). Effect of size of on the inflorescences and bulb yield of Ornithogalum saun-dersiae Bak. grown in an unheated plastic tunnel. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech., 312(31), 153–158.
  • Salachna, P., Piechocki, R. Zawadzińska, A., Wośkowiak, A. (2015). Response of speckled spur-flower to salinity stress and salicylic acid treatment. J. Ecol. Eng., 16(5), 68–75.
  • Salachna, P., Zawadzińska, A. (2013). The effects of flurprimidol concentrations and application methods on Ornithogalum saundersiae Bak. grown as a pot plant. Afr. J. Agric. Res., 8(49), 6625–6628.
  • Salachna, P., Zawadzińska, A. (2015). Comparison of growth, flowering and bulbs yield of four Ornithogalum L. species grown in the ground. Folia Pomer. Univ. Technol. Stetin., Agric., Al-iment., Pisc., Zootech. 318(34), 57–64.
  • Shillo, R., Ding, M., Pasternak, D., Zaccai, M. (2002). Cultivation of cut flower and bulb species with saline water. Sci. Hortic., 92(1), 41–54.
  • Torbaghan, M.E., Torbaghan, M.E. Ahmadi, M.M. (2011). The effect of salt stress on flower yield and growth parameters of saffron (Crocus sativus L.) in greenhouse condition. Int. Res. J. Agric. Sci. Soil Sci., 1(10), 421–427.
  • Türkoglu, N., Erez, M.E., Battal, P. (2011). Determination of physiological responses on hyacinth (Hyacinthus orientalis) plant exposed to different salt concentrations. Afr. J. Biotechnol., 10(32), 6045–6051.
  • Valdez-Aguilar, L.A., Grieve, C.M., Poss, J., Mellano, M.A. (2009). Hypersensitivity of Ranun-culus asiaticus to salinity and alkaline pH in irrigation water in sand cultures HortScience, 44(1), 138–144.
  • Van Zandt, P.A., Mopper, S. (2002). Delayed and carryover effects of salinity on flowering in Iris hexagona (Iridaceae) Am. J. Bot., 89(11), 1847–1851.
  • Veatch-Blohm, M.E., Chen, D., Hassett, M. (2013). Narcissus cultivar differences in response to saline irrigation when application began either pre- or postemergence. HortScience, 48(3), 322–329.
  • Veatch-Blohm, M.E., Malinowski, M., Keefer, D. (2012). Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. Sci. Hortic., 144, 65–73.
  • Veatch-Blohm, M.E., Morningstar, L. (2011). Calla lily growth and development under saline irrigation. HortScience, 46(2), 222–227.
  • Veatch-Blohm, M.E., Sawch, D., Elia, N., Pinciotti, D. (2014). Salinity tolerance of three com-monly planted Narcissus cultivars. HortScience, 49(9), 1158–1164.
  • Villarino, G.H., Mattson, N.S. (2011). Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology, 21(5), 539–545.
  • Wrochna, M., Gawrońska, H., Gawroński, S.W. (2006). Effect of salt stress on fresh and dry matter production and accumulation of Na+, K+, Ca2+, Mg2+, Cl- ions in selected species of or-namental plants. Acta Agrophys. 7(3), 775–785. [in Polish]
  • Wrochna, M., Małecka-Przybysz, M., Gawrońska, H. (2010). Effect of road de-icing salts with anti corrosion agents on selected plant species. Acta Sci. Pol. Hortorum Cultus, 9(4), 171–182.
  • Zhang, L., Ma, H., Chen, T., Pen, J., Yu, S., Zhao, X. (2014). Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE 9(11): e112807. doi: 10.1371/journal.pone.0112807.
  • Zollinger, N., Koenig, R., Cerny-Koenig, T., Kjelgren, R. (2007). Relative salinity tolerance of intermountain western United States native herbaceous perennials. HortScience, 42, 529–534.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7d872d9-8eea-4136-8da3-e2e7ee593365
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.