PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 07 |

Tytuł artykułu

Regulatory effects of atrazine differentially override sucrose repression of amino acid catabolism

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Catabolic processes providing alternative sources of electron for the mitochondrial electron transport chain are progressively emerging as important players in plants for stress responses, nutritional switch responses and growth and development. In this context, xenobiotics, such as the herbicide atrazine, which are at the crossroads of xenobiotic action, photosystem homeostasis and ROS dynamics, are likely to be useful for understanding the regulation of these catabolic processes. Transcriptomic analysis of atrazine effects on Arabidopsis under different conditions of carbon status reveals that atrazine significantly upregulates the genes involved in leucine catabolism, in contrast to partial regulatory effects on the genes involved in valine, isoleucine and lysine catabolic pathways. These effects on amino acid catabolism gene expression are associated with regulatory effects on genes involved in proteolytic processes and in alternative carbon mitochondrial respiration. Genes involved in leucine catabolism are activated by atrazine in the presence of exogenous sucrose, thus indicating that atrazine-associated signals can override sucrose repression. There may be a link between these effects and atrazine-related increase in hydrogen peroxide, which is involved in retrograde signalling. However, comparison with studies of reactive oxygen species modifications indicate that atrazine regulation of branched chain amino acid catabolism differs from reactive oxygen species signalling, including hydrogen peroxide, thus suggesting complex signalling pathways between photosystem functioning and leucine catabolism.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

07

Opis fizyczny

p.2329-2337,fig.,ref.

Twórcy

autor
  • Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Universite´ de Rennes 1, Campus de Beaulieu, baˆtiment 14A, 35042 Rennes Cedex, France
autor
  • Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Universite´ de Rennes 1, Campus de Beaulieu, baˆtiment 14A, 35042 Rennes Cedex, France
autor
  • Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Universite´ de Rennes 1, Campus de Beaulieu, baˆtiment 14A, 35042 Rennes Cedex, France
autor
  • Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Universite´ de Rennes 1, Campus de Beaulieu, baˆtiment 14A, 35042 Rennes Cedex, France

Bibliografia

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
  • Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563
  • Araújo WL, Ishizaki K, Nunes-Nesi A, Tohge T, Larson TR, Krahnert I, Balbo I, Witt S, Dörmann P, Graham IA, Leaver CJ, Fernie AR (2011) Analysis of a range of catabolic mutants provides evidence that phytanoyl-Coenzyme A does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence. Plant Physiol 157:55–69
  • Baena-González E, Sheen J (2008) Convergent energy and stress signalling. Trends Plant Sci 13:474–482
  • Bode K, Hooks MA, Couée I (1999) Identification, separation, and characterization of acyl-CoA dehydrogenases involved in mitochondrial ß-oxidation in higher plants. Plant Physiol 119: 1305–1314
  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510
  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Ok Lim P, Gil Nam H, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585
  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347
  • Däschner K, Couée I, Binder S (2001) The mitochondrial isovaleryl-Coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol 126:601–612
  • Diebold R, Schuster J, Däschner K, Binder S (2002) The branchedchain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550
  • Dieuaide M, Couée I, Raymond P, Pradet A (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid ß-oxidation and acyl-CoA dehydrogenase activity in a higher plant. Biochem J 296:199–207
  • Ding G, Che P, Ilarslan H, Wurtele ES, Nikolau BJ (2012) Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination. Plant J 70:562–577
  • Dobrenel T, Marchive C, Somani R, Moreau M, Mozzo M, Montané MH, Menand B, Robaglia C, Meyer C (2011) Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc Trans 39:477–481
  • Engqvist MKM, Drincovich MF, Flügge UI, Maurino VG (2009) Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and b-oxidation pathways. J Biol Chem 284:25026–25036
  • Engqvist MKM, Kuhn A, Wienstroer J, Weber K, Jansen EEW, Jakobs C, Weber APM, Maurino VG (2011) Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J Biol Chem 286:11382–11390
  • Faivre-Nitschke SE, Couée I, Vermel M, Grienenberger JM, Gualberto JM (2001) Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Biochem 268:1332–1339
  • Fujiki Y, Ito M, Nishida I, Watanabe A (2000) Multiple signalling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol 124:1139–1147
  • Goetzman ES, Mohsen AWA, Prasad K, Vockley J (2005) Convergent evolution of a 2-Methylbutyryl-CoA dehydrogenase from Isovaleryl-CoA dehydrogenase in Solanum tuberosum. J Biol Chem 280:4873–4879
  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene-expression in cucumber. Plant Cell 6:761–772
  • Gu L, Jones AD, Last RL (2010) Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant J 61:579–590
  • Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922
  • Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (2005) The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600
  • Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760
  • Lamesch P, Berardini PZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210
  • Lucas KA, Filley JR, Erb JM, Graybill ER, Hawes JW (2007) Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J Biol Chem 282:24980–24989
  • Mack M, Schniegler-Mattox U, Peters V, Hoffmann GF, Liesert M, Buckel W, Zschocke J (2006) Biochemical characterization of human 3-methylglutaconyl-CoA hydratase and its role in leucine metabolism. FEBS J 273:2012–2022
  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signalling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729
  • Mentzen WI, Peng J, Ransom N, Nikolau BJ, Wurtele ES (2008) Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biol 8:76
  • Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, El Amrani A, Couée I, Gouesbet G (2007) Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450
  • Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G (2009) Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28
  • Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I (2012) Xenobiotic sensing and signalling in higher plants. J Exp Bot 63:3999–4014
  • Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J 71:850–859
  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653
  • Sass JO, Forstner R, Sperl W (2004) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: impaired catabolism of isoleucine presented as neurodegenerative disease. Brain Dev 26:12–14
  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254
  • Stipanuk MH (2007) Leucine and protein synthesis: mTOR and beyond. Nutr Rev 65:122–129
  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2004) Lipoic aciddependent oxidative catabolism of a-ketoacids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol 134:838–848
  • Weisman D, Alkio M, Colón-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signalling pathways. BMC Plant Biol 10:59

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7b9a146-fac6-4b6b-8252-1c4ebe5914f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.