PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 4 |

Tytuł artykułu

Growing the endangered species Astragalus nitidiflorus in the nursery: fertilization rate affects growth, and leaf nutrient and chlorophyll contents

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Astragalus nitidiflorus is an endangered legume endemic to the southeast of the Iberian Peninsula. This species develops symbiotic relationships with N-fixing bacteria. However, the problem of isolating its rhizobia has not been solved. Because poor N fixation in plants can be corrected by fertilization, the effect of N-P-K fertilizers on growth, leaf chlorophyll and mineral ions was studied. Plants of A. nitidiflorus were grown in 100%-substrate with different N-P-K fertilizer rates (mg l–1): 1-1-8 (S0), 69-29-35 (SL), 144-43-131 (SM) and 245-58-235 (SH). A treatment with substrate plus soil from the natural habitat and no fertilizers (T0) was included. The reference foliar contents of N, P and K were 42.5, 3.5 and 36.5 mg g–1, respectively. Although the species did not form root nodules when grown in substrate, T0 plants produced active nodules that allowed the plants to grow properly without fertilization. In the absence of nodules, both N fertilization (~144 mg l–1) and Fe fertilization (>12 mg l–1) are vital, as is, to a lesser extent, K fertilization (~75 mg l–1 K2O). The S0 and SL reduced leaf chlorophyll, while SM prevented its degradation.

Wydawca

-

Rocznik

Tom

17

Numer

4

Opis fizyczny

p.129-136,fig.,ref.

Twórcy

autor
  • Departamento de Produccion Vegetal, Universidad Politecnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
  • Departamento de Produccion Vegetal, Universidad Politecnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
autor
  • Departamento de Produccion Vegetal, Universidad Politecnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
autor
  • Departamento de Produccion Vegetal, Universidad Politecnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain

Bibliografia

  • Barickman, T.C., Horgan, T.E., Wheeler, J.R., Sams, C.E. (2016). Elevated levels of potassium in greenhousegrown red romaine lettuce impacts mineral nutrient and soluble sugar concentrations. HortScience, 51(5), 504– 509.
  • Bazin, M.J., Markham, P., Scott, E.M., Lynch, J.M. (1990). Population dynamics and rhizosphere interactions. In: The rhizosphere, Lynch J.M. (ed.). John Wiley and Sons Ltd., Chichester, 99–127.
  • Castroviejo, S., Talavera, S., Aedo, C., Zarco, C., Saez, L., Salgueiro F.J., Velayos, M. (1986). Flora-Península Ibérica. Tomo VII: Leguminosae. Real Jardín Botánico, CSIC. Madrid, España.
  • De Kreij, C., Sonneveld, C., Warmenhoven, M.G., Straver, N.A. (1992). Guide values for nutrient element contents of vegetables and flowers under glass. Report No. 15. Research Station for Floriculture and Greenhouse Vegetables Report, Naaldwijk.
  • El-Jaoual, T., Cox, D.A. (1998). Manganese toxicity in plants. J. Plant Nutr., 21, 353–386.
  • Fageria, N.K. (1988). Influence of iron on nutrient uptake by rice. Int. Rice Res News, 13, 20–21.
  • Fageria, V.D. (2001). Nutrient interactions in crop plants. J. Plant Nutr., 24(8), 1269–1290.
  • Hauck, M., Paul, A., Gross, S., Raubuch, M. (2003). Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Env. Exp. Bot., 492, 181–191.
  • Killingbeck, K.T. (2004). Nutrient Resorption. In: Plant Cell Death Processes, Noodén, L.D. (ed.). Academic Press, San Diego, 215–226.
  • Kim, H.J., Li, X. (2016). Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in lantana. HortScience, 518, 1001–1009.
  • Lester, G.E., Jifon, J.L., Makus, D.J. (2010). Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L.) case study. Plant Soil, 335, 117–131.
  • Martínez-Sánchez, J.J., Segura, F., Aguado, M., Franco, J.A., Vicente, M.J. (2011). Life history and demographic features of Astragalus nitidiflorus, a critically endangered species. Flora, 206, 423–432.
  • Navarro, A., Fos, S., Laguna, E., Duran, D., Rey, L. (2014). Conservation of Endangered Lupinus mariaejosephae in its natural habitat by inoculation with selected, native bradyrhizobium strains. Available: http://journals.plos.org/plosone/article?id=10.1371/jour nal.pone.0102205
  • Radhamani, R., Kannan, R., Rakkiyappan, P. (2016). Leaf chlorophyll meter readings as an indicator for sugarcane yield under iron deficient typic Haplustert. Sugar Tech., 181, 61–66.
  • Sonneveld, C., Voogt, W. (2009). Plant nutrition of greenhouse crops. Springer, New York. Terry, R.E., Soerensen, K.U., Jolley, V., Brown, J.C. (1991). The role of active Bradyrhizobium japonicum in iron stress response of soy-beans. Plant Soil, 130, 225–230.
  • Valdés, R., Ochoa, J., Franco, J.A., Sánchez-Blanco, M.J., Bañón, S. (2015). Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors. Agric. Water Manag., 149, 123–130.
  • Van der Boon, J. (1981). A slow-release fertilizer for nursery plants in container. Acta Hortic., 126, 321–348.
  • Vicente, M.J., Conesa, E., Bañón, S., Martínez-Sánchez, J.J. (2016). Optimización de la producción en vivero de Astragalus nitidiflorus, una especie en peligro crítico de desaparición. Foresta, 66, 58–62.
  • Yermiyahu, U., Israeli, L., David, D.R., Faingold, I., Elad, Y. (2015). Higher potassium concentration in shoots reduces gray mold in sweet basil. Phytopathology, 1058, 1059–1068.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7b68ecc-0d94-48ee-ba13-95ece1e3afe3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.