PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 6 |

Tytuł artykułu

Differential sensitivity of growth and net photosynthetic rates in five tree species seedlings under simulated acid rain stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigated the effect of simulated acid rain (SAR) (heavy: pH 2.5; moderate: pH 4.0; and control: pH 5.6) stress on the growth and net photosynthetic rate (Pn) of five tree species, namely Castanopsis sclerophylla, Cinnamomum camphora, Manglietia fordiana, Pinus massoniana, and Elaeocarpus glabripetalus. Results showed variable responses to SAR with different pH values depending on the type of plants. P. massoniana seedlings exhibited significant growth reduction in response to all of the SAR treatments. The net photosynthetic rate of P. massoniana treated by SAR decreased by 20 and 34% under pH 4 and 2.5, suggesting that P. massoniana was susceptible when exposed to acid rain. These results indicate that P. massoniana was the highest sensitivity inhibitory type to SAR and should be protected. However, the growth, chlorophyll content, and Pn of three species (C. sclerophylla, C. camphora, M. fordiana) revealed the following result: moderate acid rain > control > heavy acid rain, suggesting that moderate acid rain promoted photosynthesis and growth to some extent. Among the five species, E. glabripetalus exhibited the highest extent of tolerance to acid rain. The sensitivity of growth and Pn of E. glabripetalus was significantly higher than that of the control, indicating that SAR promoted rather than inhibited its seedling, E. glabripetalus belonging to the promotional type. The stress tolerance of five species of trees to SAR was observed in the following order: E. glabripetalus > C. sclerophylla, C. camphora, M. fordiana > P. massoniana. But exposure to SAR at PH 2.5 to 5.6 did not affect the final mortality of five tree species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

6

Opis fizyczny

p.2259-2264,fig.,ref.

Twórcy

autor
  • National Engineering Laboratory of Biopesticide Preparation, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Linan 311300, Zhejiang, People's Republic of China
autor
  • National Engineering Laboratory of Biopesticide Preparation, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Linan 311300, Zhejiang, People's Republic of China

Bibliografia

  • 1. ZHANG J.E., OUYANG Y., LING D.J. Impacts of simulat­ed acid rain on cation leaching from the Latosol in south China. Chemosphere. 67, 2131, 2007.
  • 2. LIU E.U., LIU C.P. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings. Water Air Soil Poll. 215, 127, 2011.
  • 3. JÓŹWIAK M.A., KOZŁOWSKI R., JÓŹWIAK M. Effects of Acid Rain Stemflow of Beech Tree (Fagus sylvatica L.) on Macro-Pedofauna Species Composition at the Trunk Base. Pol. J. Envrion. Stud. 22, 149, 2013.
  • 4. LING D.J., HUANG Q.C., OUYANG Y. Impacts of simu­lated acid rain on soil enzyme activities in a latosol. Ecotox. Environ. Safe. 73, 1914, 2010.
  • 5. AKSOY O., ERBULUCU T., ONER S., TEKELI I.B. Phytotoxic and genotoxic effects of water samples taken from the eastern channel of Kocaeli on Vicia faba and Zea mays. Fresen. Environ. Bull. 21, 1819, 2012.
  • 6. CHEN J., LI W., GAO F. Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China. J Environ Monitor. 12, 1799, 2010.
  • 7. TANG X.Y., LUO L., ZHANG H.J. The study on the space­time distribution characteristics of acid rain in Southwest. Plateau and Mt Meteorolo Res. 29, 33, 2009.
  • 8. FLÓREZ M., MARTÍNEZ E., CARBONELL M.V. Effects of Magnetic Field Treatment on Germination of Medicinal Plants Salvia officinalis L. and Calendula officinalis L. Pol. J. Envrion. Stud. 21, (1), 57, 2012.
  • 9. CHEN J., WANG W.H., LIU T.W., WU F.H., ZHENG H.L. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfUric-rich and nitric-rich simulated acid rain. Plant Physiol. Bioch. 64, 41, 2013.
  • 10. MOHAMAD Z.A.G., MOH E.S., LEONG C.P. Effects of simulated acid rain on germination and growth of rice plant. J Trop Agric and Fd Sci. 36, 281, 2008.
  • 11. BLANK L.W., ROBERTS T.M., SKEFFINGTON R.A. New perspectives on forest decline. Nature. 336, 27, 1988.
  • 12. ANITA S., MADHOOLIKA A. Acid rain and its ecological consequences. J. Environ. Biol. 29, 15, 2008.
  • 13. DUAN X.H., HU X.F., CHEN F.S., DENG Z.Y. Effects of Simulated Acid Rain and Aluminum Enrichment on Growth and Photosynthesis of Tea Seedlings. Adv Mater Res. 610, 181, 2013.
  • 14. ARNOLD W.R., DIAMOND R.L., SMITH D.S. The Effects of Salinity, pH, and Dissolved Organic Matter on Acute Copper Toxicity to the Rotifer, Brachionus plicatilis ("L" Strain). Arch. Environ. Con. Tox. 59, 225, 2010.
  • 15. DENG S., GOU S., SUN B. Modeled Dosage - Response Relationship on the Net Photosynthetic Rate for the Sensitivity to Acid Rain of 21 Plant Species. B. Environ. Contam. Tox. 89, 251, 2012.
  • 16. RUUHOLA T., RANTALA L.M., NEUVONEN S. Effects of long-term simulated acid rain on a plant-herbivore inter­action. Basic Appl Ecol. 10, 589, 2009.
  • 17. LIU J.X., ZHOU G.Y., YANG C.W., OU Z.Y., PENG C.L. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. & Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China. Acta Physiol. Plant. 29, 33, 2007.
  • 18. XU W.T., PENG X.L., LUO Y.B. Physiological and bio­chemical responses of grapefruit seed extract dip on'Redglobe'grape. LWT-Food Sci Technol. 42, 471, 2009.
  • 19. LARSSEN T., LYDERSEN E., TANG D., HE Y., GAO J., LIU H., DUAN L., SEIP H.M., VOGT R.D., MULDER J., SHAO M., WANG Y., SHANG H., ZHANG X., SOLBERG S., AAS W., OKLAND T., EILERTSEN O., ANGELL V., LIU Q., ZHAO D., XIANG R., XIAO J., LUO J. Acid rain in China. Environ. Sci. Technol. 40, 418, 2006.
  • 20. WOOTTON-BEARD P.C., MORAN A., RYAN L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res. Int. 44, 217, 2011.
  • 21. XIE Z., DU Y., ZENG Y., LI Y., YAN M. Effects of precip­itation variation on severe acid rain in southern China. J Geogr Sci. 19, 489, 2009.
  • 22. SHUN Z., XIANGQUN Z., CHUN C. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain. Plos One. 7, 1, 2012.
  • 23. SHUMEJKO P., OSSIPOV V., NEUVONEN S. The effects of simulated acid rain on the biochemical composition of Scots pine (Pinus sylvestris L.) needles. Environ Pollut. 92, 315, 1996.
  • 24. GUO Z.H., LIAO B.H., HUANG C.Y. Mobility and specia­tion of Cd, Cu, and Zn in two acidic soils affected by simu­lated acid rain. J. Environ. Sci. 17, 332, 2005.
  • 25. NURZYŃSKA-WIERDAK R. Ocimum basilicum L. - a valuable spice, medicinal and oleiferous plant. A review. Ann. UMCS. Lublin. 21, 20, 2012.
  • 26. GABARA B., SKŁODOWSKA M., WYRWICKA A., GLIŃSKA S., GAPIŃSKAB M. Changes in the ultrastruc­ture of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acidrain. Plant Sci. 164, 507, 2003.
  • 27. VAN H.M., PIQUERAS A., DEBERGH P.C. The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci. 155, 59, 2000.
  • 28. CAPPELLATO R., PETERS N.E., RAGSDALE H.L. Acidic atmo-spheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia piedmont. Can. J. Forest Res. 23, 1114, 1993.
  • 29. LEE C.S., LEE K.S., HWANGBO J.K., YOU Y.H., KIM J.H. Selection of tolerant plants and their arrangement to restore a forest ecosystem damaged by air pollution. Water Air Soil Poll. 156, 251, 2004.
  • 30. WU F.Z., YANG W.Q., ZHANG J., ZHOU L.Q. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil. J. Hazard. Mater. 177, 268, 2010.
  • 31. CUCULOVIĆ A., VESELINOVIĆ D., MILJANIĆ S.S. 137Cs Desorp-tion from lichen Using Acid Solutions. Russian J Phys Chem. 83, 1547, 2009.
  • 32. SMITH K L., STEVEN M.D., COLLS J.J. Use of hyper- spectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 92, 207, 2004.
  • 33. SIEPAK J., WALNA B., DRZYMAŁA S. Speciation of Aluminium Released Under the Effect of Acid Rain. Pol. J. Environ. Stud. 8, 55, 1999.
  • 34. SINGH A., AGRAWAL M. Acid rain and its ecological con­sequences. J. Environ. Biol. 29, 15, 2008.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7a60da6-86f4-413b-a9c6-eba5414eb23c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.