PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 2 |

Tytuł artykułu

Estimating body mass from the astragalus in mammals

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Astragalar fossils have been intensively studied as an indicator of the functional morphology and phylogenetic relationships of mammals. However, relatively few studies have investigated the relationship between astragalar size and body mass, usually with a focus on a particular taxonomic group. Here, univariate and multiple regression models are used to analyze the relationship between astragalar size and body mass based on an extensive sample of extant land mammals (11 orders, 48 species, 80 individuals; body mass ranging from 18 g to 3.4 t). The analyses revealed the size of the tibial trochlea to be a better predictor of body mass than the total size of the astragalus. Based on these results, estimates of the body mass of several Paleogene land mammals were calculated and compared to those of previous studies. Thus, for example, the body mass of “Baluchitherium”, the largest terrestrial mammal known to date, was estimated at about 10–15 t.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.259-265,fig.,ref.

Twórcy

autor
  • Great Ape Research Institute, Hayashibara Co., Ltd., 952-2 Nu, Tamano 706-0316, Japan and Hayashibara Museum of Natural Sciences, 4382-4 Shirimi, Oku-cho, Setouchi 701-4212, Japan

Bibliografia

  • Alexander, R.M. 1989. Dynamics of Dinosaurs and Other Extinct Giants. 167 pp. Columbia University Press, New York.
  • Alexander, R.M., Jayes, S.A., Maloiy, G.M.O., and Wathuta, M.E. 1979. Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). Journal of Zoology (London) 189: 305–314.
  • Andersson, K. 2004. Predicting carnivoran body mass from a weight-bearing joint. Journal of Zoology (London) 262: 161–172.
  • Anyonge, W. 1993. Body mass in large extant and extinct carnivores. Journal of Zoology (London) 231: 339–350.
  • Burness, G.P., Diamond, J., and Flannery, T. 2001. Dinosaurs, dragons, and dwarfs: The evolution of maximal body size. PNAS 98: 14518–14523.
  • Blyth, E. 1875. Catalogue of mammals and birds of Burma. Journal of the Asiatic Society of Bengal 44 (2, extra no.): i–xiv, 1–167.
  • Calder, W.A. 1984. Size, Function, and Life History. 431 pp. Harvard University Press, Cambridge.
  • Conroy, G.C. 1987. Problems of body-weight estimation in fossil primates. International Journal of Primatology 8: 115–135.
  • Copes, L.E. and Schwartz, G.T. 2010. The scale of it all: postcanine tooth size, the taxon-level effect, and the universality of Gould’s scaling law. Paleobiology 36: 188–203.
  • Creighton, G.K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of Zoology (London) 191: 435–443.
  • Dagosto, M., Marivaux, L., Gebo, D.L. Beard, K.C., Chaimanee, Y., Jaeger, J.-J., Marandat, B., Soe, A.N., and Kyaw, A.A. 2010. The phylogenetic affinities of the Pondaung tali. American Journal of Physical Anthropology 143: 223–234.
  • Dagosto, M. and Terranova, C.J. 1992 Estimating body size of Eocene primates: a comparison of results from dental and postcranial variables. International Journal of Primatology 13: 307–344.
  • Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 229–253. Cambridge University Press, Cambridge.
  • Damuth, J. and MacFadden, B.J. 1990. Introduction: body size and its estimation. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 1–10. Cambridge University Press, Cambridge.
  • De Esteban-Triviqno, S., Mendoza, M., and De Renzi, M. 2008. Body mass estimation in Xenarthra: a predictive equation suitable for all quadrupedal terrestrial placentals? Journal of Morphology 269: 1276–1293.
  • DeGusta, D. and Vrba, E. 2003. A method for inferring paleohabitats from the functional morphology of bovid astragali. Journal of Archaeological Science 30: 1009–1022.
  • Draper, N.R. and Smith, H. 1998. Applied Regression Analysis. 736 pp. 3rd edition. John Wiley & Sons, Inc., New York.
  • Duan, N. 1983. Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association 78: 605–610.
  • Economos, A.C. 1981. The largest land mammal. Journal of Theoretical Biology 89: 211–215.
  • Egi, N. 2001. Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology 44: 497–528.
  • Egi, N., Takai, M., Shigehara, N., and Tsubamoto, T. 2002. Body mass estimates for Pondaung primates [in Japanese with English summary]. Primate Research 18: 1–18.
  • Egi, N., Takai, M., Shigehara, N., and Tsubamoto, T. 2004. Body mass esti mates for Eocene eosimiid and amphipithecid primates using prosimians and anthropoid scaling models. International Journal of Primatology 25: 211–236.
  • Eisenberg, J.F. 1990. The behavioral/ecological significance of body size in the Mammalia. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 25–37. Cambridge University Press, Cambridge.
  • Figueirido, B., Pérez−Claros, J.A., Hunt, R.M. Jr., and Palmqvist, P. 2011. Body mass estimation in amphicyonid carnivoran mammals: A multiple regression approach from the skull and skeleton. Acta Palaeontologica Polonica 56: 225–246.
  • Fleagle, J.G. 1998. Primate Adaptation and Evolution. 2nd edition. 596 pp. Academic Press, New York.
  • Fortelius, M. 1990. Problems with using fossil teeth to estimate body sizes\ of extinct mammals. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 207–228. Cambridge University Press, Cambridge.
  • Fortelius, M. and Kappelman, J. 1993. The largest mammal ever imagined. Zoological Journal of Linnean Society, London 108: 85–101.
  • Gebo, D.L., Dagosto, M., Beard, K.C., Qi, T., and Wang, J. 2000. The oldest known anthropoid postcranial fossils and the early evolution of higher primates. Nature 404: 276–278.
  • Gingerich, P.D. 1990. Prediction of body mass in mammalian species from long bone length and diameters. Contributions from the Museum of Paleontology, University of Michigan 28: 79–92.
  • Gingerich, P.D., Smith, B.H., and Rosenberg, K. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58: 81–100.
  • Granger, W. and Gregory, W.K. 1935. A revised restoration of the skeleton of Baluchitherium, gigantic fossil rhinoceros of Central Asia. American Museum Novitates 787: 1–3.
  • Granger, W. and Gregory, W.K. 1936. Further notes on the gigantic extinct rhinoceros, Baluchitherium, from the Oligocene of Mongolia. Bulletin of the American Museum of Natural History 72: 1–73.
  • Gray, H. 1958. Anatomy: Descriptive and Surgical. 750 pp. J.W. Parker, London.
  • Janis, C.M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 255–299. Cambridge University Press, Cambridge.
  • LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20: 97–117.
  • Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16: 191–212.
  • Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen (Reihe A, Geologie und Paläontologie) 16: 1–110.
  • Martinez, J.-N. and Sudre, J. 1995. The astragalus of Paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28: 197–209.
  • McNab, B.K. 1990. The physiological significance of body size. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 11–23. Cambridge University Press, Cambridge.
  • Mellett, J.S., 1977. Paleobiology of North American Hyaenodon (Mammalia, Creodonta). Contributions to Vertebrate Evolution 1: 1–134.
  • Mendoza, M., Goodwin, B., and Criado, C. 2004. Emergence of community structure in land mammal-dominated ecosystems. Journal of Theoretical Biology 230: 203–214.
  • Mendoza, M., Janis, C.M., and Palmqvist, P. 2005. Ecological patterns in the trophic-size structure of mammal communities: a taxon-free characterization. Evolutionary Ecology Research 7: 505–530.
  • Mendoza, M., Janis C.M., and Palmqvist, P. 2006. Estimating the body mass of extinct ungulates: a study on the use of multiple regression. Journal of Zoology (London) 270: 90–101.
  • Morlo, M. 1999. Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios 32: 297–305.
  • Nakatsukasa, M., Takai, M., and Setoguchi, T. 1997. Functional morphology of the postcranium and locomotor behavior of Neosaimiri fieldsi, a Saimiri-like middle Miocene platyrrhine. American Journal of Physical Anthropology 102: 515–544.
  • Natori, M. 2002. Allometric scaling in the molars of titi monkeys [in Japanese with English summary]. Primate Research 18: 59–67.
  • Osborn, H.F. 1923. Baluchitherium grangeri, a giant hornless rhinoceros from Mongolia. American Museum Novitates 78: 1–15.
  • Parr, W.C.H., Chatterjee, H.J., and Soligo, C. 2011. Inter- and intra-specific scaling of articular surface areas in the hominoid talus. Journal of Anatomy 218: 386–401.
  • Peters, R.H. 1983. The Ecological Implications of Body Size. 344 pp. Cambridge University Press, Cambridge.
  • Plummer, T.W., Bishop, L.C., and Hertel, F. 2008. Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science 35: 3016–3027.
  • Polly, P.D. 2008. Adaptive zones and the pinniped ankle: A 3D quantitative analysis of carnivoran tarsal evolution. In: E. Sargis and M. Dagosto (eds.), Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay, 165–194. Springer, Dordrecht.
  • Rafferty, K.L., Walker, A., Ruff, C.B., Rose, M.D., and Andrews, P.J. 1995. Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of P. major from Napak, Uganda. American Journal of Physical Anthropology 97: 391−402.
  • Reynolds, P.S. 2002. How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83: 321–332.
  • Ruff, C. 1990. Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 119–149. Cambridge University Press, Cambridge.
  • Ruff, C.B. 2003. Long bone articular and diaphyseal structure in Old World monkeys and apes. II: Estimation of body mass. American Journal of Physical Anthropology 120: 16−37.
  • Scott, K.M. 1990. Postcranial dimensions of ungulates as predictors of body mass. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 301–335. Cambridge University Press, Cambridge.
  • Simpson, G.G., Roe, A., and Lewontin, R.C. 2003. Quantitative Zoology. Revised edition. vii + 440 pp. Dover Publications, Mineola.
  • Smith, F.A., Boyer, A.G., Brown, J.H., Costa, D.P., Dayan, T., Ernest, S.K.M., Evans, A.R., Fortelius, M., Gittleman, J.L., Hamilton, M.J., Harding, L.E., Lintulaakso, K., Lyons, S.K., McCain, C., Okie, J.G., Saarinen, J.J., Sibly, R.M., Stephens, P.R., Theodor, J., and Uhen, M.D. 2010: The evolution of maximum body size of terrestrial mammals. Science 330: 1216–1219.
  • Smith, R.J. 1981. On the definition of variables in studies of primate dental allometry. American Journal of Physical Anthropology 55: 323−329.
  • Smith, R.J. 1984a. Allometric scaling in comparative biology: problems of concept and method. American Journal of Physiology 246: R152–R160.
  • Smith, R.J. 1984b. Determination of relative size: the “criterion of subtraction” problem in allometry. Journal of Theoretical Biology 108: 131–142.
  • Smith, R.J. 1993a. Bias in equations used to estimate fossil primate body mass. Journal of Human Evolution 25: 31–41.
  • Smith, R.J. 1993b. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90: 215−228.
  • Smith, R.J. 2002. Estimating of body mass in paleontology. Journal of Human Evolution 42: 271–287.
  • Snowdon, P. 1991. A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research 21: 720–724.
  • Sokal, R.R. and Rohlf, F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 887 pp. 3rd edition. W.H. Freeman and Co., New York.
  • Sprugel, D.G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.
  • Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7: 162–182.
  • Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. In: J. Damuth and B.J. MacFadden (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, 181–205. Cambridge University Press, Cambridge.
  • Warton, D.I., Wright, I.J., Falster, D.S., and Westoby, M. 2006. Bivariate line-fitting methods for allometry. Biological Review 81: 259–291.
  • Zar, J.H. 2010. Biostatistical Analysis. 944 pp. 5th edition (Pearson International edition). Pearson Education, Inc., New Jersey.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-d7a470bc-f67e-4198-b5e0-c9651dc5bda5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.