PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 87 | 3 |

Tytuł artykułu

Genetic variability in pitch pine (Pinus rigida Mill.) growing in the Niepolomice Forest as determined by ISSR markers

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study aimed to determine the genetic variability in pitch pine (Pinus rigida Mill.) growing in the Niepołomice Forest (southern Poland). In the late nineteenth and early twentieth century, Adolf Cieślar of the Department of Forestry Research in Mariabrunn near Vienna, Austria established the experimental crops of pitch pine. During the study, 227 trees that grew in seven subunits were considered; an analysis of genetic polymorphism using the intersimple sequence repeats (ISSR) technique revealed that pitch pine is genetically variable. The average number of alleles at a given locus for all the pine trees was 1.649, while the effective number of alleles at the loci was 1.435. The value of expected heterozygosity was 0.254, while the percentage of polymorphic loci was 75.30%. The average genetic distance between the examined pines was 0.082. Principal coordinate analysis (PCoA) divided the examined pines into three groups, which was also confirmed by the structure-analysis results of the software STRUCTURE. The resulting division was mainly generated by the SR70 primer, which was indicated to be the primer that differentiated the examined populations of pitch pine. Affiliation of particular trees to selected groups was based on their occurrence in individual crops. This suggests a different origin of the seeds used to establish the research plots of pitch pine in the Niepołomice Forest.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

87

Numer

3

Opis fizyczny

Article 3593 [12p.],fig.,ref.

Twórcy

autor
  • Institute of Genetics, Plant Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Department of Genetics and Forest Tree Breeding, Institute of Forest Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland
autor
  • Institute of Genetics, Plant Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Department of Genetics and Forest Tree Breeding, Institute of Forest Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland

Bibliografia

  • 1. Little S, Garrett PW. Pinus rigida Mill. – pitch pine. In: Burns RM, Honkala BH, editors. Silvics of North America, conifers. Vol. 1. Washington, DC: U. S. Department of Agriculture, Forest Service; 1990. (Agriculture Handbook; vol 654).
  • 2. Danielewicz W. Obce gatunki drzew i krzewów w lasach. Warszawa: Wydawnictwo “Świat”; 2013. (Biblioteczka Leśniczego; vol 362).
  • 3. Cieslar A. Über Anbauversuche mit fremdländischen Holzarten in Österreich. Centralblatt für das Gesamte Forstwesen. 1901;27:101–116.
  • 4. Feng F, Han S, Wang H. Genetic diversity and genetic differentiation of natural Pinus koraiensis population. Journal of Forestry Research. 2006;17(1):21–24. https://doi.org/10.1007/s11676-006-0005-5
  • 5. Copenheaver CA, Grinter LE, Lorber JH, Neatrour MA, Spinney MP. A dendroecological and dendroclimatic analysis of Pinus virginiana and Pinus rigida at two slope positions in the Virginia Piedmont. Costanea. 2002;67(3):302–315.
  • 6. Seo YO, Lee YJ, Lumbres RIC, Pyo JK, Kim RH, Son YM, et al. Influence of stand age class on biomass expansion factor and allometric equations for Pinus rigida plantations in South Korea. Scand J For Res. 2013;28(6):566–573. https://doi.org/10.1080/02827581.2013.786126
  • 7. Ledig FT, Lambeth CC, Linzer DIH. Nursery evaluation of a pitch pine provenance trial. In: Proceedings of the Twenty-third Northeast Forest Tree Improvement Conference; 1975 Aug 4–7; New Brunswick, New Jersey, USA. New Brunswick, NJ: Rutgers University; 1976. p. 93–108.
  • 8. Raj D, Govindaraju D, Orians C. Genetic variation among pitch pine Pinus rigida families from Walden Woods: heritability and path analysis of developmental variation of phenotypic traits. Rhodora. 2006;108(936):356–369. https://doi.org/10.3119/0035-4902(2006)108[356:GVAPPP]2.0.CO;2
  • 9. Ledig FT, Zobel BJ, Matthias MF. Geoclimatic patterns in specific gravity and tracheid length in wood of pitch pine. Can J For Res. 1975;5(2):318–329. https://doi.org/10.1139/x75-043
  • 10. Gibson DJ, Zampella RA, Windisch AG. New Jersey pine plains: the “true barrens” of the New Jersey pine barrens. In: Anderson RC, Fralish JS, Baskin JM, editors. Savannas, barrens, and rock outcrop plant communities of North America. New York, NY: Cambridge University Press; 1999. p. 52–66. https://doi.org/10.1017/CBO9780511574627.004
  • 11. Jordan M, Patterson WA, Windisch AG. Conceptual ecological models for the Long Island pitch pine barrens: implications for managing rare plant communities. For Ecol Manage. 2003;185:151–168. https://doi.org/10.1016/S0378-1127(03)00252-4
  • 12. Kurczewski FE, Boyle HF. Historical changes in the pine barrens of central Suffolk County, New York. Northeast Nat (Steuben). 2000;7(2):95–112. https://doi.org/10.1656/1092-6194(2000)007[0095:HCITPB]2.0.CO;2
  • 13. Landis R, Gurevitch J, Fox G, Fang W, Taub D. Variation in recruitment and early demography in Pinus rigida following crown fire in the pine barrens of Long Island, New York. J Ecol. 2005;93:607–617. https://doi.org/10.1111/j.1365-2745.2005.00996.x
  • 14. Andresen JW. A study of pseudo-nanism in Pinus rigida Mill. Ecol Monogr. 1959;29(4):309–332. https://doi.org/10.2307/1942133
  • 15. Ledig FT, Little S. Pitch pine (Pinus rigida Mill.): ecology, physiology, and genetics. In: Forman RTT, editor. Pine barrens: ecosystem and landscape. New York, NY: Academic Press; 1979. p. 347–371. https://doi.org/10.1016/B978-0-12-263450-5.50029-6
  • 16. Guries RP, Ledig FT. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution. 1982;36(2):387–402. https://doi.org/10.2307/2408058
  • 17. Bush RM, Smouse PE, Ledig FT. The fitness consequences of multiple-locus heterozygosity: the relationship between heterozygosity and growth rate in pitch pine (Pinus rigida Mill.). Evolution. 1987;41(4):787–798. https://doi.org/10.1111/j.1558-5646.1987.tb05853.x
  • 18. Misenti TL, DeHayes DH. Genetic diversity of marginal vs. central populations of pitch pine and jack pine. In: Demerritt ME, editor. Proceedings of the 31st Northeastern Forest Tree Improvement Conference and the 6th Northcentral Tree Improvement Association; 1988 Jul 7–8; Pennsylvania State University University Park, PA, USA. [Berea, KY]: [Executive Secretary, NEFTIC, USFS Forestry Sciences Lab.]; 1989. p. 63–72.
  • 19. Nkongolo KK, Michael P, Gratton WS. Identification and characterization of RAPD markers inferring genetic relationships among pine species. Genome. 2002;45(1):51–58. https://doi.org/10.1139/g01-121
  • 20. Govindaraju DR, Cullis CA. Ribosomal DNA variation among populations of a Pinus rigida Mill. (pitch pine) ecosystem: I. Distribution of copy numbers. Heredity. 1992;69(2):133–140. https://doi.org/10.1038/hdy.1992.106
  • 21. Porth I, El-Kassaby YA. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity. 2014;6(2):283–295. https://doi.org/10.3390/d6020283
  • 22. Food and Agriculture Organization of the United Nations. Report of the 14th regular session of the Commission on Genetic Resources for Food and Agriculture [Internet]. 2013 [cited 2018 Aug 28]. Available from: http://www.fao.org/docrep/meeting/028/mg468e.pdf
  • 23. Dubiel E. Rośliny naczyniowe Puszczy Niepołomickiej. Kraków: Instytut Botaniki Uniwersytetu Jagiellońskiego; 2003. (Prace Botaniczne; vol 37).
  • 24. Lesiński J, Grabowski A. Miąższość i przyrost miąższości sosen: Pinus silvestris L., P. banksiana Lamb. i P. rigida Mill. na siedlisku boru mieszanego w Puszczy Niepołomickiej. Zeszyty Naukowe Wyższej Szkoły Rolniczej w Krakowie, Leśnictwo. 1969;4:101–130.
  • 25. Rogers SO, Bendich AJ. Extraction of DNA from plant tissue. In: Glevin SB, Schilperoort RA, editors. Plant molecular biology manual. Dordrecht: Kluwer Academic Publishers; 1988.
  • 26. Bergmann F, Gregorius HR. Comparison of the genetic diversities of various populations of Norway spruce (Picea abies). In: Rudin F, editor. Proceedings of the conference: Biochemical Genetics of Forest Trees; 1978; Umeå, Sweden. Umeå: Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences; 1979. p. 99–107.
  • 27. Nei M, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance. Genetics. 1974;76(2):379–390.
  • 28. Brown AHD, Weir BS. Measuring genetic variability in plant populations. In: Tranksley SD, Orton TJ, editors. Isozymes in plant genetic and breeding. Part A. Amsterdam: Elselvier; 1983. p. 219–239.
  • 29. Nei M. Genetic distance between populations. Am Nat. 1972;106(949):283–292. https://doi.org/10.1086/282771
  • 30. Peakall R, Smouse PE. GenAlex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2005;6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  • 31. Yeh FC, Boyle T, Yang RC. POPGENE: Microsoft Windows-based freeware for population genetic analysis, version 1.31. Edmonton: University of Alberta; 1999.
  • 32. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959.
  • 33. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  • 34. Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7
  • 35. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–1806. https://doi.org/10.1093/bioinformatics/btm233
  • 36. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4(1):137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
  • 37. Masternak K, Kuźniar A, Banach J. Characteristics of shagbark hickory in the Niepołomice Primeval Forest of southern Poland. Austrian Journal of Forest Science. 2013;130(4):239–254.
  • 38. Woo LS, Hoon YB, Don HS, Ho SJ, Joo LJ. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Ann For Sci. 2008;65(3):302–302. https://doi.org/10.1051/forest:2008006
  • 39. Li H, Jang J, Liu G, Ma X, Dong J, Lin S. Genetic variation and division of Pinus sylvestris provenances by ISSR markers. J For Res. 2005;16(3):216–218. https://doi.org/10.1007/BF02856818
  • 40. Labra M, Grassi F, Sgorbati S, Ferrari C. Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora. 2006;201(6):468–476. https://doi.org/10.1016/j.flora.2005.10.004
  • 41. Wang MB, Hao ZZ. Rangewide genetic diversity in natural populations of Chinese pine (Pinus tabulaeformis). Biochem Genet. 2010;48(7–8):590–602. https://doi.org/10.1007/s10528-010-9341-4
  • 42. Gapare WJ, Aitken SN, Ritland CE. Genetic diversity of core and peripheral Sitka spruce [Picea sitchensis (Bong.) Carr] populations: implications for conservation of widespread species. Biol Conserv. 2005;123(1):113–123. https://doi.org/10.1016/j.biocon.2004.11.002
  • 43. Li Y, Lu SB, Liu XY, Jiang YM, Li SG, Zhu D. ISSR analysis on genetic diversity of endanged plant Pseudotsuga gaussenii Flous. Plant Sci J. 2010;28:38–42. https://doi.org/10.3724/SP.J.1142.2010.00038
  • 44. Ge XJ, Zhou XL, Li ZC, Hsu TW, Schaal BA, Chiang TY. Low genetic diversity and significant population structuring in the relict Amentotaxus argotaenia complex (Taxaceae) based on ISSR fingerprinting. J Plant Res. 2005;118(6):415–422. https://doi.org/10.1007/s10265-005-0235-1
  • 45. Morris AB, Small RL, Cruzan MB. Variation in frequency of clonal reproduction among populations of Fagus grandifolia Ehrh. in response to disturbance. Castanea. 2004;69(1):38–51. https://doi.org/10.2179/0008-7475(2004)069%3C0038:VIFOCR%3E2.0.CO;2
  • 46. Alikhani L, Rahmani MS, Shabanian N, Badakhshan H, Khadivi-Khub A. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene. 2014;552(1):176–183. https://doi.org/10.1016/j.gene.2014.09.034
  • 47. Rubio-Moraga A, Candel-Perez D, Lucas-Borja ME, Tiscar PA, Viñegla B, Linares JC, et al. Genetic diversity of Pinus nigra Arn. populations in southern Spain and northern Morocco revealed by inter-simple sequence repeat profiles. Int J Mol Sci. 2012;13(5):5645–5658. https://doi.org/10.3390/ijms13055645
  • 48. Phong DT, Hien VTT, Lieu TT. Genetic variation of Pinus dalatensis Ferre’(Pinaceae) populations – endemic species in Vietnam revealed by ISSR markers. J Chem Biol Phys Sci. 2015;5(2):1415–1425.
  • 49. Cui L, Baofeng C, Mengben W. Population genetic structure of Pinus tabulaeformis in Shanxi Plateau, China. Russ J Ecol. 2008;39(1):34–40. https://doi.org/10.1134/S1067413608010062
  • 50. Hawley GJ, Schaberg PG, DeHayes DH. The importance of preserving genetic uniqueness in pitch pine restoration (Vermont). Ecological Restoration. 2002;20:281– 282.
  • 51. Wachowiak W. Relacje genetyczne pomiędzy polskimi i referencyjnymi populacjami sosny zwyczajnej (Pinus sylvestris L.) z Europy w analizie polimorfizmu sekwencji nukleotydowych loci nDNA. Sylwan 2015;159(1):26–37.
  • 52. Nowakowska J. Zróżnicowanie genetyczne wybranych populacji sosny zwyczajnej (Pinus sylvestris L.) na podstawie analiz RAPD. Sylwan. 2003;11:26–37.
  • 53. Ledig FT, Clark JG. Photosynthesis in a half-sib family experiment in pitch pine. Can J For Res. 1977;7:510–514. https://doi.org/10.1139/x77-065
  • 54. Parasharami VA, Thengane SR. Inter population genetic diversity analysis using ISSR markers in Pinus roxburghii (Sarg.) from Indian provenances. Int J Biodivers Conserv. 2012;4(5):219–227.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d7772221-4fbf-4f31-9a83-c69bbfc7d814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.