Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Spatial variability of sediment yield in Turkish basins

Warianty tytułu
Języki publikacji
It is of great importance to know the amount of sediment transported to water structures and/or irrigation facilities during their planned lifetime. The amount of sediment transported is used in the design of such facilities, thus minimizing sedimentation losses. Determining sediment amount is generally based on empirical and physical modeling and on the relationship between sediment load and stream flow, where the sediment concentration measurements are correlated with flow characteristics. Each of these methods has some weaknesses. This study aimed to prepare a sediment yield map using suspended sediment measurements obtained from the State Hydraulic Works in 114 observation stations with a recording length of 15 years or more. Since the relationship between the amount of sediment and flow rate is known, the flow rate is considered as secondary data and sediment yield is mapped by the co-kriging method. The map showing spatial variation of the sediment yield was evaluated with the calibration and validation stages, and satisfactory results were obtained. Thus, sediment yield can be estimated at a project site where there is no suspended sediment measurement.
Słowa kluczowe
Opis fizyczny
  • Civil Engineering Department, Ege University, Bornova, Izmir, Turkey
  • Civil Engineering Department, Ege University, Bornova, Izmir, Turkey
  • 1. VERSTRAETEN G., POESEN J. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40, 123, 2001.
  • 2. WUTTICHAIKITCHAROEN P., BABEL M.S. Principal Component and Multiple Regression Analyses for the Estimation of Suspended Sediment Yield in Ungauged Basins of Northern Thailand. Water, 6, 2412, 2014.
  • 3. MEDEIROS P.H.A., GUNTNER A., FRANCKE T., MAMEDE G.L., de ARAUJO J.C. Modelling spatiotemporal patterns of sediment yield and connectivityin a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J., 55, 636, 2010.
  • 4. KUSVURAN K. Investigation of Rainfall and Flow in Mersin – Tarsus Topcu Deresi Basin and Sediment Yield in Lower Basin. General Directorate of Agricultural Research Tarsus Research Institute of Soil and Water Resources, Project Nr: TAGEM-BB-TOPRAKSU-2011/125, 2011.
  • 5. AREKHI S., SHABANI A., ALAVIPANAH S.K. Evaluation of Integrated KW-GIUH and MUSLE Models to Predict Sediment Yield Using Geographic Information System Case Study: Kengir Watershed, Iran. African Journal of Agricultural Research, 6 (18), 4185, 2011.
  • 6. BENJAMIN H., MACKEY B.H., ROERING J.J. Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. GSA Bulletin, 123 (7-8), 1560, 2011.
  • 7. DYSARZ T., WICHER-DYSARZ J. Application of Hydrodynamic Simulation and Frequency Analysis for Assessment of Sediment Deposition and Vegetation Impacts on Floodplain Inundation. Pol. J. Environ. Stud. 20 (6), 1441, 2011.
  • 8. MAYOR Á.G., BAUTISTA S., BELLOT J. Scaledependent variation in runoff and sediment yield in a semiarid Mediterranean catchment. Journal of Hydrology. 397 (1-2), 128, 2011.
  • 9. NADAL-ROMERO E., MARTÍNEZ-MURILLO J.F., VANMAERCKE M., POESEN J. Scale-dependency of sediment yield from badland areas in Mediterranean environments. Progress in Physical Geography, 35 (3), 297, 2011.
  • 10. TUNNICLIFFE J, CHURCH M. Scale variation of postglacial sediment yield in Chilliwack Valley, British Columbia. Earth Surface Processes and Landforms, 36, 229, 2011.
  • 11. VANMAERCKE M., POESEN J., VERSTRAETEN G., de VENTE J., OCAKOGLU F. Sediment yield in Europe: spatial patterns and scale dependency. Geomorphology, 130, 142, 2011.
  • 12. VANMAERCKE M., POESEN J., MAETENS W., de VENTE J., VERSTRAETEN G. Sediment Yield as a Desertification Indicator. Science of the Total Environment, 409, 1715, 2011.
  • 13. AKSU, N., UCAN, K. Comparison of observed sediment yields with the sediment yields calculated by empirical methods in Hurman Creek basin. KSU Journal of Natural Sciences, 15 (3), 1, 2012.
  • 14. PELLETIER J.D. A spatially distributed model for the long-term suspended sediment discharge and delivery ratio of drainage basins. Journal of Geophysical Research – Earth Surface 117 F02028. 2012.
  • 15. VIGIAK O, BORSELLI L, NEWHAM LTH, McINNES J, ROBERTS A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology, 138, 74, 2012.
  • 16. BUSSI G., RODRIGUEZ-LLOVERAS X., FRANCES F., BENITO G., SANCHEZ-MOYA Y., SOPENA A. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol. Earth Syst. Sci., 17, 3339, 2013.
  • 17. RODRÍGUEZ-BLANCO M.L., TABOADA-CASTRO M.M., TABOADA-CASTRO M.T. Linking the field to the stream: soil erosion and sediment yield in a rural catchment, NW Spain Catena, 102, 74, 2013.
  • 18. de VENTE J., POESEN J., VERSTRAETEN G., GOVERS G., VANMAERCKE M., VAN ROMPAEY A., ARABKHEDRI M., BOIX-FAYOS C. Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Science Reviews, 127, 16, 2013.
  • 19. KOC G. Evaluation of erosion potential in Tarsus (Mersin) – Topcu Deresi lower basin using modified universal soil loss equation (MUSLE). Hacettepe University MSc Thesis in Department of Geological Engineering, Ankara, Turkey, 2014.
  • 20. WORRALL F., BURT T.P., HOWDEN N.J.K., HANCOCK G.R. Variation in suspended sediment yield across the UK – a failure of the concept and interpretation of the sediment delivery ratio. Journal of Hydrology, 519, 1985, 2014.
  • 21. BRACKEN LJ, TURNBULL L, WAINWRIGHT J, BOGAART P. Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40, 177, 2015.
  • 22. YESUF H.M., ASSEN M., ALAMIREW T., MELESSE A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena, 127, 191, 2015.
  • 23. ZHAO G., KONDOLF G.M., MU X., HAN M., HE Z., RUBIN Z., WANG F., GAO P., SUN W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena, 148 (2), 126, 2017.
  • 24. BUENDIA C., HERRERO A., SABATER S., BATALLA R.J. An appraisal of the sediment yield in western Mediterranean river basins. Science of the Total Environment, 572, 538, 2016.
  • 25. RENS J. H. MASSELINK R.J.H., KEESSTRA S.D., TEMME A.J.A.M., SEEGER M., GIMÉNEZ R., CASALÍ J. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components, Land Degradation and Development, 27 (4), 933, 2016.
  • 26. SUN J. Ground Sediment Transport Model and Numerical Simulation. Pol. J. Environ. Stud, 25 (4), 1691, 2016.
  • 27. CHURCH M. Interpreting sediment yield scaling. Earth Surface Processes and Landforms, 42 (12), 1895, 2017.
  • 28. OZALP M., ERDOGAN YUKSEL E., YILDIRIMER S. Subdividing large mountainous watersheds into smaller hydrological units to predict soil loss and sediment yield using the GeoWEPP model. Pol. J. Environ. Stud., 26 (5), 2135, 2017.
  • 29. ZHAO G., KLIK A., MU X., WANG F., GAO P., SUN W. Sediment yield estimation in a small watershed on the northern Loess Plateau, China. Geomorphology, 241 (15), 343, 2015.
  • 30. GARCIA-RUIZ J.M., LASANTA T., MARTI C., GONZALEZ C., WHITE S.M., ORTIGOSA L., RUIZ FLANO P. Changes in runoff and erosion as a consequence of land-use changes in the central Spanish Pyrenees. Physics and Chemistry of the Earth, 20, 301, 1995.
  • 31. LU X.X., HIGGITT D.L. Recent changes in sediment yield in the Upper Yangtze, China. Environmental Management, 22, 697, 1998.
  • 32. BATHURST J.C., KILSBY C.G., WHITE,S.M. Modelling the impacts of climate and land use change on basin hydrology and soil erosion in Mediterranean Europe. Mediterranean Desertification and Land Use, Thornes J.B., Brandt C.J. (eds). Wiley: 355, 1996.
  • 33. VALERO-GARC´ES B.L., NAVAS A., MACHIN J., WALLING D. Sediment sources and siltation in mountain reservoirs: a case study from the central Spanish Pyrenees. Geomorphology, 28, 23, 1999.
  • 34. WASSON R.J. What approach to the modelling of catchment scale erosion and sediment transport shouldbe adopted?, In: Modelling Erosion, Sediment Transport and Sediment Yield. IHP-VI Technical Documents in Hydrology, Summer, W., Walling, D.E. (Eds.), UNESCO, Paris, France, 1, 2002.
  • 35. STONE M., SAUNDERSON H.C. Regional patterns of sediment yield in the Laurentian Great Lakes basin”, In: Erosion and Sediment Yield, Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996), Walling, D.E., Webb, B.W. (Eds.),. IAHS Publ. 236, 125, 1996.
  • 36. JANSSON M.B. A Global Survey of Sediment Yield. Geografiska Annaler. Series A, Physical Geography, 70 (1/2), 81, 1988.
  • 37. LU X.X., ASHMORE P., WANG J. Sediment yield mapping in a large river basin: the Upper Yangtze. China Environmental Modelling & Software, 18, 339, 2003.
  • 38. DSI. Sediment yield data. State Hydraulic Works, Turkey, 2013.
  • 39. INAL C., YIGIT C.O. Usability of kriging interpolation method in geodetic applications. Scientific Meeting of 2003 Geographic Information Systems and Geodetic Networks. 24-26 September, Konya, Turkey, 2003.
  • 40. KRAEHMER H. (Ed.) Atlas of Weed Mapping, John Wiley & Sons. 488, 2016.
  • 41. YANMAZ M. Applied Water Resources Engineering’’, METU Press. Ankara, Turkey, 1997.
  • 42. MILLER C.B. Analysis of flow-duration, sedimentrating curve method of computing sediment yield. U.S. Department of Interior, Bureau of Reclamation Sedimentation, Denver, Colorado, 1951.
  • 43. LUDWIG W., PROBST J.L. River sediment discharge to the oceans: present-day controls and global budgets. American Journal of Science, 298, 265, 1998.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.