Warianty tytułu
Reakcja sałaty na światło fluorescencyjne i światło led na tle zróżnicowanego żywienia roślin azotem
Języki publikacji
Abstrakty
In two successive pot experiments with lettuce cv. ‘Królowa Majowych’, conducted in a phytotron, this study investigated the effect of cool white fluorescent light (FRS) at a PPFD 200 ȝmol·m-2·s -1 and red-blue LED light at a PPFD of 200 and 800 ȝmol·m-2·s -1 on photosynthesis, yield, leaf area, SLA, and the content of photosynthetic pigments, total N and nitrates. Experimental plants were grown in sphagnum peat supplemented with full-strength Hoagland’s solution at the beginning of the experiment. 10 days after plants were pricked out, 4 experimental series were made which differed in the form of N supplied to the growing medium at a rate of 420 mg (2N): 1) Hoagland’s solution (control); 2) Hoagl + 2N-NO3; 3) Hoagl + 2N-NH4; 4) Hoagl + 2N-NH4/NO3. The obtained results showed that the lettuce leaf yield under FRS light was distinctly higher than under LED light at a PPFD of 200, and in particular at 800 ȝmol·m-2·s -1. Besides, the leaves grown under FRS light showed a significantly thinner leaf blade (SLA) and a lower content of photosynthetic pigments, total N and nitrates. The photosynthetic rate was higher under LED light relative to FRS light. Different nutrition of plants with N-NO3, N-NH4 and N-NH4/NO3 had a similar effect on the yield and analysed traits of lettuce leaves, regardless of the type of light and the level of irradiation with LED light. LED lamps seem to be a very promising light source for plants, but they require further research on how to adapt the spectral distribution of light to their requirements.
W dwu kolejnych doświadczeniach wazonowych prowadzonych w fitotronie z sałatą odm. Królowa Majowych badano wpływ zimno-białego światła fluorescencyjnego (FRS) przy PPFD 200 ȝmol·m-2·s -1 i światła LED o barwie czerwono-niebieskiej przy PPFD 200 i 800 ȝmol·m-2·s -1 na przebieg fotosyntezy, plon, powierzchnię liści, SLA, zawartość barwników asymilacyjnych, N-ogólnego i azotanów. Rośliny doświadczalne rosły w torfie wysokim zasilonym na początku doświadczenia pożywką Hoaglanda o pojedynczej koncentracji. Po 10 dniach od zapikowania roślin utworzono 4 serie doświadczalne różniące się formą N dodanego do podłoża w dawce 420 mg (2N): 1) pożywka Hoaglanda (kontrola), 2) Hoagl + 2N-NO3, 3) Hoagl + 2N-NH4, 4) Hoagl + 2N-NH4/NO3. Uzyskane wyniki wykazały, że plon liści sałaty przy świetle FRS był wyraźnie wyższy niż przy świetle LED o PPFD 200, a zwłaszcza 800 ȝmol·m-2·s -1. Liście spod światła FRS wykazywały istotnie cieńszą blaszkę liściową (SLA), niższą zawartość barwników, N- ogólnego i azotanów. Fotosynteza przebiegała intensywniej w świetle LED niż FRS. Zróżnicowane żywienie roślin N-NO3, N-NH4 i N-NH4/NO3 wywierało zbliżony wpływ na plonowanie i analizowane cechy liści niezależnie od rodzaju światła i poziomu napromienienia światłem LED. Lampy LED wydają się być obiecującym źródłem światła dla roślin, ale wymaga to jednak dalszych badań dotyczących dostosowania rozkładu spektralnego światła do ich wymagań.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.211-224,fig.,ref.
Twórcy
autor
- Department of Plant Physiology, University of Life Sciences in Lublin, ul.Akademicka 15, 20-950 Lublin, Poland
autor
- Department of Plant Physiology, University of Life Sciences in Lublin, ul.Akademicka 15, 20-950 Lublin, Poland
autor
- Department of Plant Physiology, University of Life Sciences in Lublin, ul.Akademicka 15, 20-950 Lublin, Poland
Bibliografia
- Arnon D.J., 1949. Cooper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1–15.
- Barta D.J., Tibbitts T.W., Bula R.J., Morrow R.C., 1992. Evaluation of light emitting diode characteristics for space-based plant irradiation source. Adv. Space Res., 12, 141–149.
- Borowski E., 1994a. Reakcja roślin pomidora na formy azotu w warunkach pełnej i zmniejszonej intensywności Światła. Annales UMCS, sec. EEE, Horticultura, 2(1), 1–12.
- Borowski E., 1994b. Reakcja saáaty na formy azotu w warunkach pełnej i dwukrotnie zmniejszonej wilgotności powietrza. Annales UMCS, sec. EEE, Horticultura, 2(10), 73–83.
- Borowski E., Blamowski Z.K., 1995. Reakcja rzepaku na żywienie N-NO3 i N-NH4 podawane w różnych fazach wzrostu roślin. Annales UMCS, sec. E, Agricultura, 50(19), 137–144.
- Bula R.J., Morrow R.C., Tibbitts T.W., Barta D.J., Ignatius R.W., Martin T.S., 1991. Light emitting diodes as a radiation source for plants. HortSci., 26, 203–205.
- Cataldo D.A., Harocn M., Schrader L.E., Youngs V.L., 1975. Rapid colorimetric determination of nitrate in plants tissue by nitration of salicylic acid. Commun. Soil Sc. Plant Anal., 6, 71–80.
- Dougher T.A.O., Bugbee B., 2001a. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol., 73, 199–207.
- Dougher T.A.O., Bugbee B., 2001b. Evidence for yellow light suppression of lettuce growth. Photochem. Photobiol., 73, 208–212.
- Hoenecke M.E., Bula R.J., Tibbitts T.W., 1992. Importance of “blue” photon levels for lettuce seedlings grown under red light-emitting diodes. HortSci., 27, 427–430.
- Hogewoning S.W. Trouwborst G., Maljaars H., Poorter H., van Ieperen W., Harbison J., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot., 61(11), 3107–3117.
- Hyeon-Hye Kim, Goins G.D., Wheeler R.M., Sager J.C., 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals Bot., 94, 691–697.
- Klein R.M., 1992. Effects of green light on biological system. Biol. Rev., 67, 199–284.
- Morrow R.C., 2008. LED lighting in horticulture. HortSci., 43, 7, 1947–1950.
- Mortensen L., Stromme E., 1987. Effects of light quality on some greenhouse crops. Sci. Hort., 33, 27–36
- Okamoto K., Yanagi T., Kondo S., 1997. Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Hort., 435, 149–157.
- Schuerger A.C., Brown C.S., Stryjewski E.C., 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot., 79, 273–282.
- Senger H., 1984. Blue light effects in biological system. Springer-Verlag, Berlin.
- Sharkey T.D., Raschke K., 1981. Effects of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol., 68, 1170–1174.
- Sun J., Nishio J.N., Vogelmann T.C., 1998. Green light drives CO2 fixation deep within leaves. Plant Cell Physiol., 39, 1020–1026.
- Sun-Ja Kim, Eun-Joo Hahn, Jeong-Wook Heo, Kee-Yoeup Paek, 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort., 101, 143–151.
- Smith H., 1993. Sensing the light environments: the functions of the phytochrome family. In: Photomorphogenesis in plants. Kendrick R.E., Kronenberg G.H.M. (eds.). Kluwer Academic Publ., Dordrecht, 377–416.
- Wojciechowska R., Kołton A., Długosz-Grochowska O.,Żupnik M., Grzesiak W., 2013. The effect of LED lighting on photosynthetic parameters and weight of lamb’s lettuce (Valerianella locusta). Folia Hort., 25/1, 41–47.
- Yorio N.C., Goins G.D., Kagie H.R., Wheeler R.M., Sager J.C., 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortSci., 36(2), 380–383.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d676c10e-0be4-4134-97e5-7dcde9a7a525