PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Quantifying the relationships of impact factors on non-point source pollution using the boosted regression tree algorithm

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Non-point source (NPS) pollution contributes greatly to the contamination of surface water quality and has aroused widespread concerns. NPS pollution is influenced by a multitude of site-related factors whose effects are complicated. We estimated NPS pollution with a soil and water assessment tool (SWAT) model in China’s Fan River watershed. A new method, boosted regression tree (BRT), was proposed to study the relationship of impact factors on NPS pollution. We analyzed the effects of elevation, land use, soil, and slope on the patterns of sediment transport, total nitrogen (TN), and total phosphorus (TP). The results showed that R² values were higher than 0.76, and NSE was higher than 0.67. The SWAT model can estimate NPS pollution effectively in a study area. Although the spatial pattern of sediment and TP was quite consistent, the relationship between sediment and TN was weak. The contribution of impact factors for sediment TN and TP were different. Slope is the most important impact factor for sediment and TP load. Land use is the most important impact factor for TN load. The BRT model can reduce barriers to factor complexity and promote understanding of the NPS pollution formation mechanism. We proposed control strategies of pollution sources, and our research has proven to be useful for the explanation of impact factors in NPS pollution study, which is meaningful for NPS pollution control.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.403-411,fig.,ref.

Twórcy

autor
  • College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
autor
  • School of Geographic Sciences, East China Normal University, Shanghai 200241, China
autor
  • Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
autor
  • Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China

Bibliografia

  • 1. Cason T.N., Gangadharan L., Duke C. A laboratory study of auctions for reducing non-point source pollution. Journal of Environmental Economics and Management. 46 (3), 446, 2003.
  • 2. Chowdary V.M., Rao N.H., Sarma P.B.S. Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management. 75 (3), 194, 2005.
  • 3. Liu M., Huang G.H., Liao R.F., Li Y.P., Xie Y.L. Fuzzy two-stage non-point source pollution management model for agricultural systems-A case study for the Lake Tai Basin, China. Agricultural Water Management. 121, 27, 2013.
  • 4. Zhang P., Liu R., Bao Y., Wang J., Yu W., Shen Z. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Research. 53, 132, 2014.
  • 5. Griffith J.A. Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air and Soil Pollution. 138 (1-4), 181, 2002.
  • 6. Xiao H., Ji W. Relating landscape characteristics to nonpoint source pollution in mine waste-located watersheds using geospatial techniques. Journal of Environmental Management. 82 (1), 111, 2007.
  • 7. Bacic I.L.Z., Rossiter D.G., Bregt A.K. Using spatial information to improve collective understanding of shared environmental problems at watershed level. Landscape and Urban Planning. 77 (1-2), 54, 2006.
  • 8. Graf A., Bogena H.R., Druee C., Hardelauf H., Puetz T., Heinemann G., Vereecken H. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resources Research. 50 (6), 4837, 2014.
  • 9. Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe. 50 (3), 885, 2007.
  • 10. Zhao P., Xia B., Hu Y., Yang Y. A spatial multi-criteria planning scheme for evaluating riparian buffer restoration priorities. Ecological Engineering. 54, 155, 2013.
  • 11. Boluwade A., Madramootoo C. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties. Water Air and Soil Pollution. 224 (10), 2013.
  • 12. Joseph J.F., Guillaume J.H.A. Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environmental Modelling & Software. 46, 292, 2013.
  • 13. Shope C.L., Maharjan G.R., Tenhunen J., Seo B., Kim K., Riley J., Arnhold S., Koellner T., Ok Y. S., Peiffer S., Kim B., Park J.H., Huwe B. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology and Earth System Sciences. 18 (2), 539, 2014.
  • 14. Borah D.K., Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Transactions of the Asae. 47 (3), 789, 2004.
  • 15. Easton Z.M., Fuka D.R., Walter M.T., Cowan D.M., Schneiderman E.M., Steenhuis T.S. Reconceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology. 348 (3-4), 279, 2008.
  • 16. Santhi C., Arnold J.G., Williams J.R., Hauck L.M., Dugas W.A. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the Asae. 44 (6), 1559, 2001.
  • 17. Chahor Y., Casali J., Gimenez R., Bingner R.L., Campo M.A., Goni M. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain). Agricultural Water Management. 134, 24, 2014.
  • 18. Gao M., Qiu J., Li C., Wang L., Li H., Gao C. Modeling nitrogen loading from a watershed consisting of cropland and livestock farms in China using Manure-DNDC. Agriculture Ecosystems & Environment. 185, 88, 2014.
  • 19. Paradelo M., Soto-Gomez D., Perez-Rodriguez P., Pose-Juan E., Eugenio Lopez-Periago J. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media. Journal of Contaminant Hydrology. 158, 14, 2014.
  • 20. Chang C.L., Lin Y.T. Using the VIKOR method to evaluate the design of a water quality monitoring network in a watershed. International Journal of Environmental Science and Technology. 11 (2), 303, 2014.
  • 21. Kaiglova J., Langhammer J. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olsava River Basin. Journal of Hydrology and Hydromechanics. 62 (1), 43, 2014.
  • 22. Aslan A., Trauth K.M. Development and Demonstration of a GIS-Based Cumulative Effectiveness Approach to Buffer Design and Evaluation. Journal of Irrigation and Drainage Engineering. 140 (5), 2014.
  • 23. Neshat A., Pradhan B., Dadras M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources Conservation and Recycling. 86, 74, 2014.
  • 24. Parisien M.-A., Moritz M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs. 79 (1), 127, 2009.
  • 25. De’ath G. BOOSTED TREES FOR ECOLOGICAL MODELING AND PREDICTION. Ecology. 88 (1), 243, 2007.
  • 26. Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology. 77 (4), 802, 2008.
  • 27. Brown D.J., Shepherd K.D., Walsh M.G., Mays M.D., Reinsch T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma. 132 (3-4), 273, 2006.
  • 28. Liu M., Li C., Hu Y., Sun F., Xu Y., Chen T. Combining CLUE-S and SWAT models to forecast land use change and non-point source pollution impact at a watershed scale in Liaoning Province, China. Chinese Geographical Science. 24 (5), 540, 2014.
  • 29. Abbaspour K.C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrist J., Srinivasan R. Modelling hydrology and water quality in the pre-ailpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333 (2-4), 413, 2007.
  • 30. Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology. 10 (3), 282, 1970.
  • 31. Castillo C.R., Gueneralp I., Gueneralp B. Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Applied Geography. 47, 154, 2014.
  • 32. Havens K.E., James R.T., East T.L., Smith V.H. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution. 122 (3), 379, 2003.
  • 33. Vitousek P.M., Naylor R., Crews T., David M. B., Drinkwater L.E., Holland E., Johnes P.J., Katzenberger J., Martinelli L.A., Matson P.A., Nziguheba G., Ojima D., Palm C.A., Robertson G.P., Sanchez P.A., Townsend A.R., Zhang F.S. Agriculture. Nutrient imbalances in agricultural development. Science. 324 (5934), 1519, 2009.
  • 34. Good A.G., Beatty P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. Plos Biology. 9 (8), 2011.
  • 35. Balestrini R., Arese C., Delconte C.A., Lotti A., Salerno F. Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecological Engineering. 37 (2), 148, 2011.
  • 36. Lowrance R., Altier L.S., Newbold J.D., Schnabel R.R., Groffman P.M., Denver J.M., Correll D.L., Gilliam J.W., Robinson J.L., Brinsfield R.B., Staver K.W., Lucas W., Todd A.H. Water quality functions of Riparian forest buffers in Chesapeake Bay watersheds. Environmental Management. 21 (5), 687, 1997.
  • 37. Weller D.E., Baker M.E., Jordan T.E. Effects of riparian buffers on nitrate concentrations in watershed discharges: new models and management implications. Ecological Applications. 21 (5), 1679, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d6598757-ce25-4acf-a2c4-043513b9d249
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.