PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 72 |

Tytuł artykułu

Photosynthetic ecophysiology of evergreen leaves in the woody angiosperms - a review

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Evergreen plants are an important component of many ecosystems of the world and occur in numerous evolutionary lineages. In this article we review phenotypic traits of evergreen woody angiosperms occurring in habitats that regularly experience frost. Leaf anatomical traits such as sclerenchymatic tissues or prominent cuticles ensure mechanical strength while often enhancing tolerance of water deficit. The low ratio of photosynthetic to nonphotosynthetic tissues as well as modified cell wall structure and nitrogen allocation patterns in evergreen leaves result in lower mass-based photosynthetic rate and photosynthetic nitrogen use efficiency in comparison with deciduous leaves. Their photosynthetic apparatus is adapted for the survival of frost in a down-regulated state with potential for photosynthetic activity in winter during periods of permissive temperatures. Leaf structure interacts with the mechanisms of frost survival. Stem xylem in evergreen plants tends to contain smaller diameter conduits incurring greater resistance to freeze/ thaw induced cavitation than in deciduous plants, although at the cost of reduced hydraulic efficiency. In contrast, no such differences in hydraulic conductivity have been documented at the leaf level. There is evidence for reduced structural plasticity of evergreen leaves in response to variability in irradiance, however photosynthetic downregulation occurs in mature leaves in response to self shading. Some evergreen species exhibit slow leaf development and “delayed greening”, while in many species aging is also a very protracted process. Finally, evergreen leaves may participate in carbohydrate and, less obviously, in nitrogen storage for the support of spring shoot and foliage growth, although the importance of this function is under debate. In conclusion, the evergreen leaf habit is correlated with numerous structural and functional traits at the leaf and also at the stem level. These correlations may generate trade-offs that shape the ecological strategies of evergreen plants.

Wydawca

-

Czasopismo

Rocznik

Tom

72

Opis fizyczny

p.3-27,fig.,ref.

Twórcy

autor
  • Laboratory of General Botany, Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • University of Minnesota, 1530 Cleveland Avenue North, St.Paul, MN 55108 USA

Bibliografia

  • Ackerly D.D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74: 25–44. http://dx.doi.org/10.1890/03-4022
  • Adams W.W. III, Demmig-Adams B., Rosenstiel T.N., Brightwell A.K., Ebbert V. 2002. Photosynthesis and photoprotection in overwintering plants. Plant Biology 4: 545–557. http://dx.doi.org/10.1055/s-2002-35434
  • Adams W.W. III, Zarter C.R., Ebbert V., Demmig-Adams B. 2004. Photoprotective strategies of overwintering evergreens. BioScience 54: 41–49. http://dx.doi.org/10.1641/0006-3568(2004)054[0041:PSOOE]2.0.CO;2
  • Aerts R. 1995. The advantages of being evergreen. Trends in Ecology and Evolution 10: 402–407. http://dx.doi.org/10.1016/S0169-5347(00)89156-9
  • Alvarez-Clare S., Kitajima K. 2007. Physical defence traits enhance seedling survival of neotropical tree species. Functional Ecology 21: 1044–1054. http://dx.doi.org/10.1111/j.1365-2435.2007.01320.x
  • Aranda I., Pardo F., Gil L., Pardos J.A. 2004. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecologica 25: 187–195. http://dx.doi.org/10.1016/j.actao.2004.01.003
  • Arena C., Vitale L., Virzo De Santo A. 2006. Annual dynamics of photosynthetic activity and photoprotective strategies in seedlings of Phillyrea angustifolia L. Poster at 16th meeting of the Italian Society of Ecology (http://www.ecologia.it/congressi/XVI/articles/arena-170.pdf).
  • Ball M.C., Canny M.J., Huang C.X., Heady R.D. 2004. Structural changes in acclimated and unacclimated leaves during freezing and thawing.Functional Plant Biology 31: 29–40. http://dx.doi.org/10.1071/FP03164
  • Ball M.C., Canny M.J., Huang C.X., Egerton J.J.G., Wolfe J. 2006. Freeze/thaw-induced embolism depends on nadir temperature: the heterogenous hydration hypothesis. Plant, Cell and Environment 29: 729–745. http://dx.doi.org/10.1111/j.1365-3040.2005.01426.x
  • Balsamo R.A., Bauer A.M., Davis S.D., Rice B.M. 2003. Leaf biomechanics, morphology, and anatomy of the deciduous mesophyte Prunus serrulata (Rosaceae) and the evergreen sclerophyllous shrub Heteromeles arbutifolia (Rosaceae). American Journal of Botany 90: 72–77. http://dx.doi.org/10.3732/ajb.90.1.72
  • Bao Y.J., Nilsen E.T. 1988. The ecological significance of leaf movements in Rhododendron maximum. Ecology 69: 1578–1587. http://dx.doi.org/10.2307/1941655
  • Bauer H., Kofler R. 1987. Photosynthesis in frost-hardened and frost-stresses leaves of Hedera helix L. Plant, Cell and Environment 10: 339–346. http://dx.doi.org/10.1111/j.1365-3040.1987.tb01615.x
  • Bauer H., Thöni W. 1988. Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix. Physiologia Plantarum 73: 31–37. http://dx.doi.org/10.1111/j.1399-3054.1988.tb09189.x
  • Blennow K., Lang A.R.G., Dunne P., Ball M.C. 1998. Cold-induced photoinhibition and growth of seedling snow gum (Eucalyptus pauciflora) under differing temperature and radiation regimes in fragmented forests. Plant, Cell and Environment 21: 407–416. http://dx.doi.org/10.1046/j.1365-3040.1998.00291.x
  • Böhnke M., Bruelheide H. 2013. How do evergreen and deciduous species respond to shade? Tolerance and plasticity of subtropical tree and shrub species of South-East China. Environmental and Experimental Botany 87: 179–190. http://dx.doi.org/10.1016/j.envexpbot.2012.09.010
  • Burghardt M., Riederer M. 2003. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. Journal of Experimental Botany 54: 1941–1949. http://dx.doi.org/10.1093/jxb/erg195
  • Cavender-Bares J., Cortes P., Rambal S., Joffre R., Miles B., Rocheteau A. 2005. Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist 168: 597–612. http://dx.doi.org/10.1111/j.1469-8137.2005.01555.x
  • Cavender-Bares J., Holbrook N.M. 2001. Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell and Environment 24: 1243–1256. http://dx.doi.org/10.1046/j.1365-3040.2001.00797.x
  • Chabot B.F., Hicks D.J. 1982. The ecology of leaf life spans. Annual Review of Ecology and Systematics 13: 229–259. http://dx.doi.org/10.1146/annurev.es.13.110182.001305
  • Chapin F.S. III, Schulze E.-D., Mooney H.A. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21: 423–447. http://dx.doi.org/10.1146/annurev.es.21.110190.002231
  • Cherbuy B., Joffre R., Gillon D., Rambal S. 2001. Internal remobilization of carbohydrates, lipids, nitrogen and phosphorus in the Mediterranean evergreen oak Quercus ilex. Tree Physiology 21: 9–17. http://dx.doi.org/10.1093/treephys/21.1.9
  • Choat B., Medek D.E., Stuart S.A., Pasquet-Kok J., Egerton J.J.G., Salari H., Sack L., Ball M.C. 2011. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist 191: 996–1005. http://dx.doi.org/10.1111/j.1469-8137.2011.03772.x
  • Cochard H., Tyree M.T. 1990. Xylem dysfunction in Quercus: vessel size, tyloses, cavitation and seasonal changes in embolism. Tree Physiology 6: 393–407. http://dx.doi.org/10.1093/treephys/6.4.393
  • Corcuera L., Morales F., Abadia A., Gil-Pelegrin E. 2005. The effect of low temperature on the photosynthetic apparatus of Quercus ilex subsp. ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle. Trees 19: 99–108. http://dx.doi.org/10.1007/s00468-004-0368-1
  • Cordero R.A., Nilsen E.T. 2002 Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates. Tree Physiology 22: 919–928. http://dx.doi.org/10.1093/treephys/22.13.919
  • Daas-Ghrib C., Montpied P., Ksontini M., Dreyer E. 2011. Functional relationships between leaf structure and photosynthetic traits as modulated by irradiance and nutrient availability in a sclerophyllous and a non-sclerophyllous mediterranean oak species. European Journal of Forest Research 130: 503–512. http://dx.doi.org/10.1007/s10342-010-0438-4
  • Davis S.D., Sperry J.S., Hacke U.G. 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany 86: 1367–1372. http://dx.doi.org/10.2307/2656919
  • Eckstein R.L., Karlsson P.S., Weih M. 1998. The significance of resorption of leaf resources for shoot growth in evergreen and deciduous woody plants from a subarctic environment. Oikos 81: 567–575. http://dx.doi.org/10.2307/3546777
  • Ellsworth D.S., Reich P.B., Naumburg E.S., Koch G.W., Kubiske M.E., Smith S.D. 2004. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated CO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology 10: 2121–2138. http://dx.doi.org/10.1111/j.1365-2486.2004.00867.x
  • Evans J.R., Jakobsen I., Ögren E. 1993. Photosynthetic light-response curves. 2. Gradients of light-absorption and photosynthetic capacity. Planta 189: 191–200. http://dx.doi.org/10.1007/BF00195076
  • Evans J.R., Kaldenhoff R., Genty B., Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60: 2235–2248. http://dx.doi.org/10.1093/jxb/erp117
  • Ewers F.W., Schmid R. 1981. Longevity of needle fascicles of Pinus longaeva (Bristlecone pine) and other North American pines. Oecologia 51: 107–115. http://dx.doi.org/10.1007/BF00344660
  • Fahn A., Cutler D.F. 1992. Xerophytes. Encyclopedia of plant anatomy. Vol. XIII.3. Gebrüder Borntraeger, Berlin, 176 p.
  • Falster D.S., Reich P.B., Ellsworth D.S., Wright I.J., Westoby M., Oleksyn J., Lee T.D. 2012. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytologist 193: 409–419. http://dx.doi.org/10.1111/j.1469-8137.2011.03940.x
  • Field C., Mooney H.A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: On the economy of form and function. Givnish T.J. (ed.). Cambridge University Press, Cambridge, pp. 25–55.
  • Fu P.-L., Jiang Y.-J., Wang A.-Y., Brodribb T.J., Zhang J.-L., Zhu S.-D., Cao K.-F. 2012. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karts forest. Annals of Botany 110: 189–199. http://dx.doi.org/10.1093/aob/mcs092
  • García-Plazaola J.I., Artetxe U., Duñabeitia M.K., Becerril J.M. 1999. Role of photoprotective systems of holm-oak (Quercus ilex) in the adaptation to winter conditions. Journal of Plant Physiology 155: 625–630. http://dx.doi.org/10.1016/S0176-1617(99)80064-9
  • García-Plazaola J.I., Olano J.M., Hernández A., Becerril J.M. 2003. Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees 17: 285–291.
  • Gilmore A.M., Ball M.C. 2000. Protection and storage of chlorophyll in overwintering evergreens. Proceedings of National Academy of Sciences of the United States of America 97: 11098–11101. http://dx.doi.org/10.1073/pnas.150237697
  • Givnish T.J. 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica 36: 703–743.
  • Gorsuch D.M., Oberbauer S.F., Fisher J.B. 2001. Comparative vessel anatomy of arctic deciduous and evergreen dicots. American Journal of Botany 88: 1643–1649. http://dx.doi.org/10.2307/3558409
  • Gostin I.N., Ivanescu L. 2008. Leaf structure and development in Buxus sempervirens L. Natura Montenegrina 7: 27–32.
  • Grace S.C., Logan B.A., Adams W.W. III. 1998. Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, in Mahonia repens. Plant, Cell and Environment 21: 513–521. http://dx.doi.org/10.1046/j.1365-3040.1998.00282.x
  • Gratani L., Bonito A. 2009. Leaf traits variation during leaf expansion in Quercus ilex L. Photosynthetica 47: 323–330. http://dx.doi.org/10.1007/s11099-009-0052-1
  • Gratani L., Covone F., Larcher W. 2006. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20: 549–558. http://dx.doi.org/10.1007/s00468-006-0070-6
  • Gratani L., Crescente M.F. 1997. Phenology and leaf adaptive strategies of Mediterranean maquis plants. Ecologia Mediterranea 23: 11–19.
  • Gratani L., Ghia E. 2002. Changes in morphological and physiological traits during leaf expansion of Arbutus unedo. Environmental and Experimental Botany 48: 51–60. http://dx.doi.org/10.1016/S0098-8472(02)00010-2
  • Green D.S., Kruger E.L. 2001. Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species. Tree Physiology 21: 1341–1346. http://dx.doi.org/10.1093/treephys/21.18.1341
  • Groom Q.J., Baker N.R., Long S.P. 1991. Photoinhibition of holly (Ilex aquifolium) in the field during the winter. Physiologia Plantarum 83: 585–590. http://dx.doi.org/10.1111/j.1399-3054.1991.tb02472.x
  • Hacker J., Neuner G. 2007. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree Physiology 27: 1661–1670. http://dx.doi.org/10.1093/treephys/27.12.1661
  • Hacker J., Neuner G. 2008. Ice propagation in dehardened alpine plant species studied by infrared differential thermal analysis (IDTA). Arctic, Antarctic and Alpine Research 40: 660–670. http://dx.doi.org/10.1657/1523-0430(07-077)[HACKER]2.0.CO;2
  • Hanba Y.T., Miyazawa S.-I., Terashima I. 1999. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology 13: 632–639. http://dx.doi.org/10.1046/j.1365-2435.1999.00364.x
  • Harris G.C., Antoine V., Chan M., Nevidomskyte D., Königer M. 2006. Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Science 170: 314–325. http://dx.doi.org/10.1016/j.plantsci.2005.08.024
  • Harrison M.T., Edwards E.J., Farquhar G.D., Nicotra A.B., Evans J.R. 2009. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant, Cell and Environment 32: 259–270. http://dx.doi.org/10.1111/j.1365-3040.2008.01918.x
  • Hassiotou F., Ludwig M., Renton M., Veneklaas E.J., Evans J.R. 2009. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany 60: 2303–2314. http://dx.doi.org/10.1093/jxb/erp021
  • Hassiotou F., Ludwig M., Renton M., Veneklaas E.J., Evans J.R., 2010. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? Journal of Experimental Botany 61: 3015–3028. http://dx.doi.org/10.1093/jxb/erq128
  • Hikosaka K. 2005. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany 95: 521–533. http://dx.doi.org/10.1093/aob/mci050
  • Hikosaka K., Hirose T. 2000. Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest. Tree Physiology 20: 1249–1254. http://dx.doi.org/10.1093/treephys/20.18.1249
  • Hikosaka K., Shigeno A. 2009. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160: 443–451. http://dx.doi.org/10.1007/s00442-009-1315-z
  • Hormaetxe K., Becerril J.M., Hernández A., Esteban R., García-Plazaola J.I. 2007. Plasticity of photoprotective mechanisms of Buxus sempervirens L. leaves in response to extreme temperatures. Plant Biology 9: 59–68. http://dx.doi.org/10.1055/s-2006-924456
  • Hormaetxe K., Hernández A., Becerril J.M., García-Plazaola J.I. 2004. Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves. Plant Biology 6: 325–332. http://dx.doi.org/10.1055/s-2004-817883
  • Hughes N.M. 2011. Winter leaf reddening in 'evergreen' species. New Phytologist 190: 573–581. http://dx.doi.org/10.1111/j.1469-8137.2011.03662.x
  • Hughes N.M., Burkey K.O., Cavender-Bares J., Smith W. 2012. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species. Journal of Experimental Botany 63: 1895–1905. http://dx.doi.org/10.1093/jxb/err362
  • Ino Y., Maekawa T., Shibayama T., Sakamaki Y. 2003. Two types of matter economy for the wintering of evergreen shrubs in regions of heavy snowfall. Journal of Plant Research 116: 327–330. http://dx.doi.org/10.1007/s10265-003-0101-y
  • Ishii H., Ohsugi Y. 2011. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation. Tree Physiology 31: 819–830. http://dx.doi.org/10.1093/treephys/tpr079
  • Ishikawa M. 1984. Deep supercooling in most tissues of wintering Sasa senanensis and its mechanism in leaf blade tissues. Plant Physiology 75: 196–202. http://dx.doi.org/10.1104/pp.75.1.196
  • Johnson D.M., Meinzer F.C., Woodruff D.R., McCulloh K.A. 2009. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant, Cell and Environment 32: 828–836. http://dx.doi.org/10.1111/j.1365-3040.2009.01961.x
  • Jordan G.J., Brodribb T.J., Blackman C.J., Weston P.H. 2013. Climate drives vein anatomy in Proteaceae. American Journal of Botany 100: 1483–1493. http://dx.doi.org/10.3732/ajb.1200471
  • Jordan G.J., Dillon R.A., Weston P.H. 2005. Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. American Journal of Botany 92: 789–796. http://dx.doi.org/10.3732/ajb.92.5.789
  • Juárez-López F.J., Escudero A., Mediavilla S. 2008. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiology 28: 367–374. http://dx.doi.org/10.1093/treephys/28.3.367
  • Karabourniotis G. 1998. Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia: a quantitative approach. Journal of Experimental Botany 49: 739–746. http://dx.doi.org/10.1093/jxb/49.321.739
  • Karlsson P.S. 1985. Photosynthetic characteristics and leaf carbon economy of a deciduous and an evergreen dwarf shrub: Vaccinium uliginosum L. and V. vitis-idaea L. Ecography 8: 9–17. http://dx.doi.org/10.1111/j.1600-0587.1985.tb01147.x
  • Karlsson P.S. 1992. Leaf longevity in evergreen shrubs: variation within and among European species. Oecologia 91: 346–349. http://dx.doi.org/10.1007/BF00317622
  • Katahata S.-I., Naramoto M., Kakubari Y., Mukai Y. 2007. Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 21: 619–629. http://dx.doi.org/10.1007/s00468-007-0155-x
  • Khanal B.P., Grimm E., Finger S., Blume A., Knoche M. 2013. Intracuticular wax fixes and restricts strain in leaf and fruit cuticles. New Phytologist 200: 134–143. http://dx.doi.org/10.1111/nph.12355
  • Kikuzawa K., Lechowicz M.J. 2011. Ecology of leaf longevity. Springer, Berlin, 147 p. http://dx.doi.org/10.1007/978-4-431-53918-6
  • Kitajima K., Llorens A.-M., Stefanescu C., Timchenko M.V., Lucas P.W., Wright S.J. 2012. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytologist 195: 640–652. http://dx.doi.org/10.1111/j.1469-8137.2012.04203.x
  • Körner C. 2003. Alpine plant life: Functional plant ecology of high mountain ecosystems. Springer, Berlin, 349 p. http://dx.doi.org/10.1007/978-3-642-18970-8
  • Kursar T.A., Coley P.D. 1992a. Delayed development of the photosynthetic apparatus in tropical rain forest species. Functional Ecology 6: 411–422. http://dx.doi.org/10.2307/2389279
  • Kursar T.A., Coley P.D. 1992b. Delayed greening in tropical leaves: an antiherbivore defense? Biotropica 24: 256–262. http://dx.doi.org/10.2307/2388520
  • Kyparissis A., Drilias P., Manetas, Y. 2000. Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Australian Journal of Plant Physiology 27: 265−272.
  • Larcher W., Siegwolf R. 1985. Development of acute frost drought in Rhododendron ferrugineum at the alpine timberline. Oecologia 67: 298–300. http://dx.doi.org/10.1007/BF00384304
  • Letts M.G., Rodríguez-Calcerrada J., Rolo V., Rambal S. 2012. Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities. Trees 26: 479–491. http://dx.doi.org/10.1007/s00468-011-0609-z
  • Lintunen A., Hölttä T., Kulmala M. 2013. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Scientific Reports 3, 2031; DOI: 10.1038/srep02031. http://dx.doi.org/10.1038/srep02031
  • Lo Gullo M.A., Nardini A., Trifilò P., Salleo S. 2003. Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiologia Plantarum 117: 186–194. http://dx.doi.org/10.1034/j.1399-3054.2003.00038.x
  • Lo Gullo M.A., Nardini A., Trifilò P., Salleo S. 2005. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees. Tree Physiology 25: 505–512. http://dx.doi.org/10.1093/treephys/25.4.505
  • Lo Gullo M.A., Salleo S. 1988. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytologist 108: 267–276. http://dx.doi.org/10.1111/j.1469-8137.1988.tb04162.x
  • Logan B.A., Grace S.C., Adams W.W. III, Demmig-Adams B. 1998. Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9–17.
  • Loreto F., Harley P.C., Di Marco G., Sharkey T.D. 1992. Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiology 98: 1437–1443. http://dx.doi.org/10.1104/pp.98.4.1437
  • Lundell R., Saarinen T., Åström H., Hänninen H. 2008. The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter. Botany 86: 491–500. http://dx.doi.org/10.1139/B08-022
  • Lusk C.H., Onoda Y., Kooyman R., Guttiérez-Girón A. 2010. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytologist 186: 429–438. http://dx.doi.org/10.1111/j.1469-8137.2010.03202.x
  • Lusk C.H., Reich P.B., Montgomery R.A., Ackerly D.D., Cavender-Bares J. 2008. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution 23: 299–303. http://dx.doi.org/10.1016/j.tree.2008.02.006
  • Marchi S., Tognetti R., Minocci A., Borghi M., Sebastiani L. 2008. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europea). Trees 22: 559–571. http://dx.doi.org/10.1007/s00468-008-0216-9
  • Marty C., Lamaze T., Pornon A. 2009. Endogenous sink-source interactions and soil nitrogen regulate leaf life-span in an evergreen shrub. New Phytologist 183: 1114–1123. http://dx.doi.org/10.1111/j.1469-8137.2009.02893.x
  • Mediavilla S., Escudero A., Heilmeier H. 2001. Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiology 21: 251–259. http://dx.doi.org/10.1093/treephys/21.4.251
  • Mediavilla S., Garcia-Ciudad A., Garcia-Criado B., Escudero A. 2008. Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Functional Ecology 22: 787–793. http://dx.doi.org/10.1111/j.1365-2435.2008.01453.x
  • Mediavilla S., Santiago H., Escudero A. 2002. Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species. Photosynthetica 40: 553–559. http://dx.doi.org/10.1023/A:1024399919107
  • Meletiou-Christou M.-S., Rhizopoulou S. 2012. Constraints of photosynthetic performance and water status of four evergreen species co-occurring under field conditions. Botanical Studies 53: 325–334.
  • Milla R., Castro-Díez P., Maestro-Martínez M., Montserrat-Martí G. 2005. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist 168: 167–178. http://dx.doi.org/10.1111/j.1469-8137.2005.01477.x
  • Miyaké K. 1902. On the starch of evergreen leaves and its relation to photosynthesis during the winter. Botanical Gazette 33: 321–340. http://dx.doi.org/10.1086/328232
  • Miyazawa S., Satomi S., Terashima I. 1998. Slow leaf development of evergreen broad-leaved tree species in Japanese warm temperate forests. Annals of Botany 82: 859–869. http://dx.doi.org/10.1006/anbo.1998.0770
  • Miyazawa Y., Kikuzawa K. 2005a. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaves species in a temperate deciduous forest. Tree Physiology 26: 249–256. http://dx.doi.org/10.1093/treephys/26.2.249
  • Miyazawa Y., Kikuzawa K. 2005b. Winter photosynthesis by saplings of evergreen broad-leaved trees in a deciduous temperate forest. New Phytologist 165: 857–866. http://dx.doi.org/10.1111/j.1469-8137.2004.01265.x
  • Miyazawa Y., Kikuzawa K., Otsuki K. 2007. Decrease in the capacity for RuBP carboxylation and regeneration with the progression of cold-induced photoinhibition during winter in evergreen broadleaf tree species in a temperate forest. Functional Plant Biology 34: 393–401. http://dx.doi.org/10.1071/FP06312
  • Monk C.D. 1966. An ecological significance of evergreenness. Ecology 47: 504–505. http://dx.doi.org/10.2307/1932995
  • Muller O., Hirose T., Werger M.J.A., Hikosaka K. 2011. Optimal use of leaf nitrogen explains seasonal changes in leaf nitrogen content of an understorey evergreen shrub. Annals of Botany 108: 529–536. http://dx.doi.org/10.1093/aob/mcr167
  • Muller O., Oguchi R., Hirose T., Werger M.J.A., Hikosaka K. 2009. The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Physiologia Plantarum 136: 299–309. http://dx.doi.org/10.1111/j.1399-3054.2009.01224.x
  • Nardini A. 2001. Are sclerophylls and malacophylls hydraulically different? Biologia Plantarum 44: 239–245. http://dx.doi.org/10.1023/A:1010251425995
  • Nardini A., Salleo S. 2000. Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15: 14–24. http://dx.doi.org/10.1007/s004680000071
  • Nardini A., Tyree M., Salleo S. 2001. Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiology 125: 1700–1709. http://dx.doi.org/10.1104/pp.125.4.1700
  • Neuner G., Ambach D., Aichner K. 1999. Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiology 19: 725–732. http://dx.doi.org/10.1093/treephys/19.11.725
  • Neuner G., Bannister P. 1995. Frost resistance and susceptibility to ice formation during natural hardening in relation to leaf anatomy in three evergreen tree species from New Zealand. Tree Physiology 15: 371–377. http://dx.doi.org/10.1093/treephys/15.6.371
  • Niinemets Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment 30: 1052–1071. http://dx.doi.org/10.1111/j.1365-3040.2007.01683.x
  • Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T. 2005. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell and Environment 28: 1552–1566. http://dx.doi.org/10.1111/j.1365-3040.2005.01392.x
  • Niinemets Ü., Cescatti A., Rodeghiero M., Tosens T. 2006. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell and Environment 29: 1159–1178. http://dx.doi.org/10.1111/j.1365-3040.2006.01499.x
  • Niinemets Ü., Díaz-Espejo A., Flexas J., Galmés J., Warren C.R. 2009a. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany 60: 2249–2270. http://dx.doi.org/10.1093/jxb/erp036
  • Niinemets Ü., Wright I.J., Evans J.R. 2009b. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany 60: 2433–2449. http://dx.doi.org/10.1093/jxb/erp045
  • Nilsen E.T. 1986. Quantitative phenology and leaf survivorship of Rhododendron maximum in contrasting irradiance environments of the southern Appalachian mountains. American Journal of Botany 73: 822–831. http://dx.doi.org/10.2307/2444293
  • Nilsen E.T. 1992. Thermonastic leaf movements: a synthesis of research with Rhododendron. Botanical Journal of The Linnean Society 110: 205–233. http://dx.doi.org/10.1111/j.1095-8339.1992.tb00291.x
  • Oberhuber W., Bauer H. 1991. Photoinhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees. Planta 185: 545–553. http://dx.doi.org/10.1007/BF00202965
  • Oleksyn J., Reich P.B., Zytkowiak R., Karolewski P., Tjoelker M.G. 2003. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136: 220–235. http://dx.doi.org/10.1007/s00442-003-1265-9
  • Oliveira G., Peñuelas J. 2002. Comparative protective strategies of Cistus albidus and Quercus ilex facing photoinhibitory winter conditions. Environmental and Experimental Botany 47: 281–289. http://dx.doi.org/10.1016/S0098-8472(02)00003-5
  • van Ommen Kloeke A.E.E., Douma J.C., Ordoñez J.C., Reich P.B., van Bodegom P.M. 2012. Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography 21: 224–235. http://dx.doi.org/10.1111/j.1466-8238.2011.00667.x
  • Ono K., Nishi Y., Watanabe A., Terashima I. 2001. Possible mechanisms of adaptive leaf senescence. Plant Biology 3: 234–243. http://dx.doi.org/10.1055/s-2001-15201
  • Onoda Y., Richards L., Westoby M. 2012. The importance of leaf cuticle for carbon economy and mechanical strength. New Phytologist 196: 441–447. http://dx.doi.org/10.1111/j.1469-8137.2012.04263.x
  • Onoda Y., Westoby M., Adler P.B., Choong A.M.F., Clissold F.J., Cornelissen J.H.C., Díaz S., Dominy N.J., Elgart A., Enrico L., Fine P.V.A., Howard J.J., Jalili A., Kitajima K., Kurokawa H., McArthur C., Lucas P. W., Markesteijn L., Pérez-Harguindeguy N., Poorter L., Richards L., Santiago L.S., Sosinski Jr E.E., van Bael S.A., Warton D.I., Wright I.J., Wright S.J., Yamashita N. 2011. Global patterns of leaf mechanical properties. Ecology Letters 14: 301–312. http://dx.doi.org/10.1111/j.1461-0248.2010.01582.x
  • Öquist G., Huner N.P.A. 2003. Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology 54: 329–355. http://dx.doi.org/10.1146/annurev.arplant.54.072402.115741
  • Palacio S., Millard P., Maestro M., Montserat-Martí G. 2007. Non-structural carbohydrates and nitrogen dynamics in Mediterranean sub-shrubs: an analysis of the functional role of overwintering leaves. Plant Biology 9: 49–58. http://dx.doi.org/10.1055/s-2006-924224
  • Pantin F., Simonneau T., Muller B. 2012. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349–366. http://dx.doi.org/10.1111/j.1469-8137.2012.04273.x
  • Pasche F., Pornon A., Lamaze T. 2002. Do mature leaves provide a net source of nitrogen supporting shoot growth in Rhododendron ferrugineum? New Phytologist 154: 99–105. http://dx.doi.org/10.1046/j.1469-8137.2002.00370.x
  • Peng Y., Arora R., Li G., Wang X., Fessehaie A. 2008a. Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Plant, Cell and Environment 31: 1275–1289. http://dx.doi.org/10.1111/j.1365-3040.2008.01840.x
  • Peng Y., Lin W., Wei H., Krebs S.L., Arora R. 2008b. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Physiologia Plantarum 132: 44–52.
  • Piwczyński M., Ponikierska A., Puchałka R., Corral J.M. 2013. Expression of anatomical leaf traits in homoploid hybrids between deciduous and evergreen species of Vaccinium. Plant Biology 15: 522–530. http://dx.doi.org/10.1111/j.1438-8677.2012.00656.x
  • Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta analysis. New Phytologist 182: 565–588. http://dx.doi.org/10.1111/j.1469-8137.2009.02830.x
  • Pornon A., Lamaze T. 2007. Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub, Rhododendron ferrugineum, in a subalpine environment. New Phytologist 175: 301–310. http://dx.doi.org/10.1111/j.1469-8137.2007.02101.x
  • Pratt R.B., Ewers F.W., Lawson M.C., Jacobsen A.L., Brediger M.M., Davis S.D. 2005. Mechanisms for tolerating freeze-thaw stress of two evergreen chaparral species: Rhus ovata and Malosma laurina (Anacardiaceae). American Journal of Botany 92: 1102–1113. http://dx.doi.org/10.3732/ajb.92.7.1102
  • Rajashekar C.B., Burke M. J. 1996. Freezing characteristics of rigid plant tissues. Development of cell tension during extracellular freezing. Plant Physiology 111 : 597–603.
  • Read J., Sanson G.D. 2003. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytologist 160: 81–99. http://dx.doi.org/10.1046/j.1469-8137.2003.00855.x
  • Reader R.J. 1978. Contribution of overwintering leaves to the growth of three broad-leaved, evergreen shrubs belonging to the Ericaceae family. Canadian Journal of Botany 56: 1248–1261. http://dx.doi.org/10.1139/b78-139
  • Reich P.B., Walters M.B., Ellsworth D.S. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of National Academy of Sciences (USA) 94: 13730–13734. http://dx.doi.org/10.1073/pnas.94.25.13730
  • Reich P.B., Ellsworth D.S., Walters M.B. 1998a. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Functional Ecology 12: 948–958. http://dx.doi.org/10.1046/j.1365-2435.1998.00274.x
  • Reich P.B., Oleksyn J., Modrzyński J., Tjoelker M.G. 1996. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology 16: 643–647. http://dx.doi.org/10.1093/treephys/16.7.643
  • Reich P.B., Rich R.L., Lu X., Wang X., Oleksyn J. 2014. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proceedings of the National Academy of Sciences of the United States of America (accepted, Oct 23’2013).
  • Reich P.B., Walters M.B., Ellsworth D.S. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62: 365–392. http://dx.doi.org/10.2307/2937116
  • Reich P.B., Walters M.B., Ellsworth D.S., Vose J.M., Volin J.C., Gresham C., Bowman W.D. 1998b. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114: 471–482. http://dx.doi.org/10.1007/s004420050471
  • Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M., Walters M.B. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164(3 Suppl.): S143–S164. http://dx.doi.org/10.1086/374368
  • Reyes-Díaz M., Alberdi M., Piper F., Bravo L.A., Corcuera L.J. 2005. Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile. Tree Physiology 25: 1389–1398. http://dx.doi.org/10.1093/treephys/25.11.1389
  • Rodríguez-Calcerrada J., Limousin J.-M., Martin-StPaul N.K., Jaeger C., Rambal S. 2012. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration. Tree Physiology 32: 464–477. http://dx.doi.org/10.1093/treephys/tps020
  • Roth-Nebelsick A., Uhl D., Mosbrugger V., Kerp H. 2001. Evolution and function of leaf venation architecture: a review. Annals of Botany 87: 553–566. http://dx.doi.org/10.1006/anbo.2001.1391
  • Rotondi A., Rossi F., Asunis C., Cesaraccio C. 2003. Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. Journal of Mediterranean Ecology 4: 25–35.
  • Russell R.B., Lei T.T., Nilsen E.T. 2009. Freezing induced leaf movements and their potential implications to early spring carbon gain: Rhododendron maximum as exemplar. Functional Ecology 23: 463–471. http://dx.doi.org/10.1111/j.1365-2435.2008.01534.x
  • Sack L., Frole K. 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87: 483–491. http://dx.doi.org/10.1890/05-0710
  • Sack L., Holbrook M.N. 2006. Leaf hydraulics. Annual Review of Plant Biology 57: 361–381. http://dx.doi.org/10.1146/annurev.arplant.56.032604.144141
  • Sakai A., Larcher W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological Studies 62. Springer, Berlin, 321 p.
  • Salleo S., Lo Gullo M.A. 1990. Sclerophylly and plant water relations in three Mediterranean Quercus species. Annals of Botany 65: 259–270.
  • Salleo S., Lo Gullo M.A., Raimondo F., Nardini A. 2001. Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange? Plant, Cell and Environment 24: 851–859. http://dx.doi.org/10.1046/j.0016-8025.2001.00734.x
  • Salleo S., Nardini A., Lo Gullo M.A. 1997. Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytologist 135: 603–612. http://dx.doi.org/10.1046/j.1469-8137.1997.00696.x
  • Salleo S., Raimondo F., Trifiló P., Nardini A. 2003. Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics. Plant, Cell and Environment 26: 1749–1758. http://dx.doi.org/10.1046/j.1365-3040.2003.01092.x
  • Sefton C.A., Montagu K., Atwell B.J., Conroy J.P. 2002. Anatomical variation in juvenile eucalypt leaves accounts for differences in specific leaf area and CO2 assimilation rates. Australian Journal of Botany 50: 301–310. http://dx.doi.org/10.1071/BT01059
  • Simonin K.A., Limm E.B., Dawson T.E. 2012. Hydraulic conductance of leaves correlates with leaf lifespan: implications for lifetime carbon gain. New Phytologist 193: 939–947. http://dx.doi.org/10.1111/j.1469-8137.2011.04014.x
  • Sobrado M.A. 1986. Aspects of tissue water relations and seasonal changes of leaf water potential components of evergreen and deciduous species coexisting in tropical dry forests. Oecologia 68: 413–416. http://dx.doi.org/10.1007/BF01036748
  • Starr G., Oberbauer S.F. 2003. Photosynthesis of Arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology 84: 1415–1420. http://dx.doi.org/10.1890/02-3154
  • Syvertsen J. P., Lloyd J., McConchie C., Kriedemann P.E., Farquhar G.D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell and Environment 18: 149–157. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00348.x
  • Takashima T., Hikosaka K., Hirose T. 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment 27: 1047–1054. http://dx.doi.org/10.1111/j.1365-3040.2004.01209.x
  • Taneda H., Tateno M. 2005. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter. Tree Physiology 25: 299–306. http://dx.doi.org/10.1093/treephys/25.3.299
  • Tattini M., Remorini D., Pineli P., Agati G., Saracini E., Traversi M.L., Massai R. 2006. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytologist 170: 779–794. http://dx.doi.org/10.1111/j.1469-8137.2006.01723.x
  • Terashima I., Hanba Y.T., Tazoe Y., Vyas P., Yano S. 2006. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany 57: 343–354. http://dx.doi.org/10.1093/jxb/erj014
  • Terashima I., Hanba Y.T., Tholen D., Niinemets Ü. 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155: 108–116. http://dx.doi.org/10.1104/pp.110.165472
  • Terashima I., Hikosaka K. 1995. Comparative ecophysiology of canopy and leaf photosynthesis. Plant, Cell and Environment 18: 1111–1128. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00623.x
  • Terashima I., Ishibashi M., Ono K., Hikosaka K. 1995. Three resistances to CO2 diffusion: leaf-surface water, intercellular spaces and mesophyll cells. In: Photosynthesis: from Light to Biosphere, Vol. V. Mathis P. (ed.) Kluwer Academic Press, Dordrecht, pp. 537–542.
  • Tjoelker M.G., Reich P.B., Oleksyn J. 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant, Cell and Environment 22: 767–778. http://dx.doi.org/10.1046/j.1365-3040.1999.00435.x
  • Tomás M., Flexas J., Copolovici L., Galmés J., Hallik L., Medrano H., Ribas-Carbó M., Tosens T., Vislap V., Niinemets Ü. 2013. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany 64: 2269–2281. http://dx.doi.org/10.1093/jxb/ert086
  • Tosens T., Niinemets Ü., Westoby M., Wright J.J. 2012. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. Journal of Experimental Botany 63: 5105–5119. http://dx.doi.org/10.1093/jxb/ers171
  • Turner I.M. 1994. Sclerophylly: primarily protective? Functional Ecology 8: 669–675. http://dx.doi.org/10.2307/2390225
  • Tyree M.T., Sperry J.S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Molecular Biology 40: 19–38. http://dx.doi.org/10.1146/annurev.pp.40.060189.000315
  • Valladares F., Arrieta S., Aranda I., Lorenzo D., Sánchez-Gómez D., Tena D., Suárez F., Pardos J.A. 2005. Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiology 25: 1041–1052. http://dx.doi.org/10.1093/treephys/25.8.1041
  • Valladares F., Wright S.J., Lasso E., Kitajima K., Pearcy R.W. 2000. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81: 1925–1936. http://dx.doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
  • Varone L., Gratani L. 2007. Physiological response of eight Mediterranean maquis species to low air temperatures during winter. Photosynthetica 45: 385–391. http://dx.doi.org/10.1007/s11099-007-0065-6
  • Verhoeven A.S., Adams W.W. III, Demmig-Adams B. 1998. Two forms of sustained xanthophyll cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus. Plant, Cell and Environment 21: 893–903. http://dx.doi.org/10.1046/j.1365-3040.1998.00338.x
  • Villar R., Held A.A., Merino J. 1995. Dark leaf respiration in light and darkness of an evergreen and a deciduous plant species. Plant Physiology 107: 421–427.
  • Villar R., Merino J. 2001. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist 151: 213–226. http://dx.doi.org/10.1046/j.1469-8137.2001.00147.x
  • Villar R., Robleto J.R., De Jong Y., Poorter H. 2006. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant, Cell and Environment 29: 1629–1643. http://dx.doi.org/10.1111/j.1365-3040.2006.01540.x
  • Villar R., Ruiz-Robleto J., Ubera J.R., Poorter H. 2013. Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. American Journal of Botany 100: 1969–1980. http://dx.doi.org/10.3732/ajb.1200562
  • Vogelmann T.C. 1993. Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology 44: 231–251. http://dx.doi.org/10.1146/annurev.pp.44.060193.001311
  • Walters M.B., Reich P.B. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143: 143–154. http://dx.doi.org/10.1046/j.1469-8137.1999.00425.x
  • Wang X., Arora R., Horner H.T., Krebs S.L. 2008. Structural adaptations in overwintering leaves of thermonastic and nonthermonastic Rhododendron species. Journal of the American Society for Horticultural Science 133: 768–776.
  • Warren C.R., Adams M.A. 2004. Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science 9: 270–274. http://dx.doi.org/10.1016/j.tplants.2004.04.004
  • Warren C.R., Adams M.A., Chen ZL. 2000. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Australian Journal of Plant Physiology 27: 407–416.
  • Wisniewski M., Gusta L., Neuner G. 2014. Adaptive mechanisms of freeze avoidance in plants: A brief update. Environmental and Experimental Botany 99: 133–140. http://dx.doi.org/10.1016/j.envexpbot.2013.11.011
  • Witkowski E.T.F., Lamont B.B. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88: 486–493.
  • Wright I.J., Cannon K. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology 15: 351–359. http://dx.doi.org/10.1046/j.1365-2435.2001.00522.x
  • Wright I.J., Leishman M.R., Read C., Westoby M. 2006. Gradients of light availability and leaf traits with leaf age and canopy position in 28 Australian shrubs and trees. Functional Plant Biology 33: 407–419. http://dx.doi.org/10.1071/FP05319
  • Wright I.J., Reich P.B., Cornelissen J.H.C., Falser D.S., Garnier E., Hikosaka K., Lamont B.B., Lee W., Oleksyn J., Osada N., Poorter H., Villar R., Warton D.I., Westoby M. 2005a. Assessing the generality of global leaf trait relationships. New Phytologist 166: 485–496. http://dx.doi.org/10.1111/j.1469-8137.2005.01349.x
  • Wright I.J., Reich P.B., Cornelissen J.H.C., Falser D.S., Groom P.K., Hikosaka K., Lee W., Lusk C.H., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Warton, D.I., Westoby M. 2005b. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411–421. http://dx.doi.org/10.1111/j.1466-822x.2005.00172.x
  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.-L., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R. 2004. The worldwide leaf economic spectrum. Nature 428: 821–827. http://dx.doi.org/10.1038/nature02403
  • Wright I.J., Westoby M., Reich P.B. 2002. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90: 534–543. http://dx.doi.org/10.1046/j.1365-2745.2002.00689.x
  • Xu C.-Y., Griffin K.L., Schuster W.S.F. 2007. Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern United States deciduous forest. Oecologia 154: 11–21. http://dx.doi.org/10.1007/s00442-007-0807-y
  • Yasumura Y., Ishida A. 2010. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia. Journal of Plant Research 124: 115–123. http://dx.doi.org/10.1007/s10265-010-0358-x
  • Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A., FitzJohn R.G., McGlinn D.J., O'Meara B.C., Moles A.T., Reich P.B., Royer D.L., Soltis D.E., Stevens P.F., Westoby M., Wright I.J., Aarssen L., Bertin R.I., Calaminus A., Govaerts R., Hemmings F., Leishman M.R., Oleksyn J., Soltis P.S., Swenson N.G., Warman L., Beaulieu J.M. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89–92. http://dx.doi.org/10.1038/nature12872
  • Zarter C.R., Adams W.W. III, Ebbert V., Adamska I., Jansson S., Demmig-Adams B. 2006. Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant, Cell and Environment 29: 869–878. http://dx.doi.org/10.1111/j.1365-3040.2005.01466.x
  • Zimmermann M.H. 1983. Xylem structure and the ascent of sap. Springer, Berlin, 143 p. http://dx.doi.org/10.1007/978-3-662-22627-8
  • Zwieniecki M.A., Brodribb T.J., Holbrook N.M. 2007. Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell and Environment 30: 910–921. http://dx.doi.org/10.1111/j.1365-3040.2007.001681.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d617bca9-7b48-4f74-a4bb-252b7f04e48d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.