PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 584 |

Tytuł artykułu

Substytuty tłuszczu mleka kobiecego produkowane z tłuszczów zwierzęcych

Treść / Zawartość

Warianty tytułu

EN
Human milk fat substitutes produced from animal fats

Języki publikacji

PL

Abstrakty

PL
Mleko matki jest najlepszym pokarmem dla noworodków i niemowląt w początkowym okresie ich życia. Jednak gdy karmienie piersią jest niemożliwe lub niepożądane, konieczne jest stosowanie substytutów mleka kobiecego (HMS). Substytuty mleka kobiecego zawierają strukturyzowane lipidy (HMFS), które odzwierciedlają skład i molekularną strukturę triacylogliceroli (TAG) obecnych w tłuszczu mleka kobiecego. Obecnie HMFS są produkowanie głównie z oleju palmowego i jego frakcji. Od niedawna prowadzone są badania dotyczące technologii wykorzystujących reakcje enzymatyczne w produkcji HMFS z tłuszczów zwierzęcych (smalec, tłuszcz mlekowy, olej z tuńczyka). W artykule dokonano przeglądu prac dotyczących HMFS opublikowanych w okresie ostatnich 15 lat. W tej pracy przedstawiono strategie i metody produkcji HMFS z tłuszczów zwierzęcych. Omówiono także właściwości różnych HMFS, zasady ich jakościowej oceny oraz metody wyboru lipaz, substratów i optymalizacji parametrów reakcji enzymatycznych. Smalec jest najczęściej stosowany jako substrat pochodzenia zwierzęcego do syntez HMFS z potencjalnymi możliwościami użycia w przemysłowej produkcji HMS.
EN
Mother’s milk (HM) is the best food for new-borns and infants. The breastfeeding is considered to be necessary during the first 6 months after the birth and there are recommendations for prolongation of the breast-feeding period until 12 or even more months. When breast-feeding is impossible or undesirable the human milk substitutes (HMS) have to be used. Apart from proteins, carbohydrates, vitamins, minerals etc., the human milk substitutes contain fats formed mainly by special structured lipids related to as human milk fat substitutes (HMFS). The HMFS mimic the composition and molecular structure of triacylglycerols (TAG) present in human milk fat (HMF). The HMF contains structured TAGs especially these ones containing larger part of palmitic acid esterified at sn-2 position of TAG molecule. Apart from HMF only few natural fats (palm oil and its fractions, lard, cow milk fat, tuna oil) have such unique molecular property. On the other hand HMF contains also rather small quantities of triacylglycerols formed by long-chain polyunsaturated fatty acids (LC-PUFA) so it have to be reflected by HMFS. Currently HMFS are produced mainly from palm oil and its fractions. Since recently the studies concerned with the production of HMFS from animal fats (lard, butter oil, tuna oil) by enzymatic technologies are reported. The papers on HMFS production from above mentioned animal fats by enzymatic technologies published during the period of last 15 years were reviewed. In this article the published strategies (1-step, 2-steps and 3-steps) and methods (alkoholysis, acidolysis and interesterification) in enzymatic production of HMFS and the procedures for their quality control, optymalization for reaction parameters, lipases selection and their immobilizations are discussed. As reported the ratios of reagents, catalyst loads, time and temperatures for synthesis of HMFS are optymalized by Central Composite Rotable Design (CCRD) methodology. The quality of final products are evaluated by simple laboratory determinations. Recently the “scores deducting principle” based on an orthogonal design with three levels and three factors was introduced. Most methods of HMFS synthesis are based on the acydolysis of selected fat (lard, butter oil, tuna oil) with mixture of fatty acids obtained from various vegetable or fish oils in the presence of lipase. Simple enzymatic interesterification of above listed animal fats with various oils became less popular. Lard is the most frequently used as an animal origin substrate for production of HMFS and there are prospects to use it for industrial production of HMS.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

584

Opis fizyczny

s.47-60,bibliogr.

Twórcy

autor
  • Katedra Chemii, Wydział Nauk o Żywności, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159c, 02-776 Warszawa
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Bibliografia

  • Adamczak M., 2004. The application of lipases in modifying the composition, structure and properties of lipids a review. Pol. J. Food Nutr. Sci. 13/54 (1), 3–10.
  • Alles M.S., Scholtens P.A.M.J., Bindels J.G., 2004. Current trends in the composition of infant milk formulas. Current Paediatrics 14, 51–63.
  • Arab-Tehrany E., Jacquot M., Gaiani C., Imran M., Desobry St., Linder M., 2012. Beneficial effects and oxidative stability of omega-3 long chain polyunsaturated fatty acids. Trends Food Sci. Technol. 25, 24–33.
  • Bar-Yoseph F., Lifshitz Y., Cohen T. 2013. Review of sn-2 palmitate oil implications for infant health. Prostaglandins, Leukotrienes, Essential Fatty Acids (PLEFA) 89(4), 139–143.
  • Bigogno Ch., Khozin-Goldberg I., Boussiba S., Vonshak A., Cohen Z., 2002. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem. 60, 497–503.
  • Bornscheuer U.T., Adamczak M., Soumanou M.M. 2013. Lipase-catalyzed synthesis of modified lipids. W: Red. F.D. Gunstone, Lipids as Constituents of Functional Foods. Woodhead Publishing Limited, 149–182.
  • Bryś J., Wirkowska M., Górska A., Ostrowska-Ligęza E., Bryś A., 2014. Application of the calorimetric and spectroscopic methods in analytical evaluation on the human milk fat substitutes. J. Therm. Anal. Calorim. 118, 841–848.
  • Chen L.M., Vali S.R., Lin J.Y., Ju Y.H., 2004. Synthesis of the structured lipid 1,3-dioleoyl-2-palmitoyl-glicerol from palm oil. J. Am. Oil Chem. Soc. 81, 525–532.
  • Dobrzańska A., Charzewska J., Weker H., Socha P., Mojska H., Książyk J., Gajewska D. Szajewska H., Stolarczyk A., Marć M., Czerwionka-Szaflarska M., Ryżko J., Wąsowska-Królikowska K., hwojnowska Z., Chybicka A., Horvath A., Socha J., 2012. Normy żywienia zdrowych dzieci w 1-3 roku życia. Stanowisko Polskiej Grupy Ekspertów. Część I. Zapotrzebowanie na energię i składniki odżywcze. Standardy Medyczne Pediatria 3, 313–316.
  • Ferreira-Dias S., Sandoval G., Plou F., Valero F., 2013. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electron. J. Biotechnol. 16(3), 1–30.
  • Fidler N., Koletzko B., Sauerwald T.U., 1999. Single cell oils production and application. Zb. Biotehniske Fak. Univ. v Ljubljani. Kmetijstvo, Zootehnika 74(2), 37–45.
  • Gruczyńska E., Kowalska D., Kozłowska M., Kowalska M., Kowalski B., 2013. Enzymatic interesterification of a lard and rapeseed oil equal-weight blend. J. Oleo Sci. 62(4), 187–193.
  • Guo M., 2014. Introduction: trends and issues in breastfeeding and the use of infant formula. W: red. M. Guo, Human milk Biochemistry and Infant Formula Manufacturing Technology. Elsevier, 1–16.
  • Hita E., Robles A., Camacho B., Ramirez A., Esteban L., Jimenez M.J., Munio M.M., Gonzalez P.A., Molina E., 2007. Production of structured triacylglycerols (STAG) rich in docosahexaenoic acid (DHA) in position 2 by acidolysis of tuna oil catalysed by lipases. Process Biochem. 42(3), 415–422.
  • Innis S.M., Dyer R., Nelson C.M., 2004. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29, 541–545.
  • Karupaiah T., Sundram K., 2007. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr. Metabol. 4, 16–31.
  • Koletzko B., Baker S., Cleghorn G. et al., 2005. Global standard for the composition of infant formula: Recommendations of an ESPGHAN Coordinated International Expert Group. J. Pedietr. Gastroenterol. Nutr. 41, 584–599.
  • Koletzko B., Lien E., Agostini C. et al., 2008. The roles of long-chainpolyunsaturated fatty acids in pregnacy, lactation and infancy: review of current knowledge and consensus recommendations. J. Perinat. Med. 36(1), 5–14.
  • Kontkanen H., Rokka S, Kemppinen A., et al., 2011. Enzymatic and physical modification a milk fat: a review. Intern. Dairy Journal 21, 3–13.
  • Kotani K., Yamamoto Y., Hara S., 2015. Enzymatic preparation of human milk fat substitutes and their oxidation stability. J. Oleo Sci. 64 (3), 275–281.
  • Kurvinen J-P, Sjöval O., Kallio H., 2002. Molecular weight distribution and regioisomeric structure of triacylglycerols in some common human milk substitutes. J. Am. Oil Chem. Soc.79,13–22.
  • Lauritzen L., Hansen H.S., Jorgensen M.H., Michaelsen K.F. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Progress Lipid Res. 40, 1–94.
  • Lewandowska M., Kordala N., Bednarski W., 2014. Współczesne możliwości stosowania nanotechnologii w doskonaleniu katalizy enzymatycznej. ZPPNR 579, 37–47.
  • Li Y., Mu H., Andersen J.E.T., Xu X., Meyer O., Orngreen A., 2010. New human milk fat substitutes from butterfat to improve fat absorption. Food Res. Intern. 43, 739–744.
  • Munio M.M., Robles A., Esteban L., Gonzalez P.A., Molina E., 2009. Synthesis of structured lipids by two enzymatic steps: Etanolysis of fish oils and esterification of 2-monoacylglycerols. Proc. Biochem. 44(7), 723–730.
  • Nielsen N.S., Yang T., Xu X., Jacobsen Ch., 2006. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chem. 94, 53-60.
  • Osborn H.T., Akoh C.C., 2002. Structured lipids – Novel fats with medical, nutraceutical, and food applications. Compr. Rev. Food Sci. Safety 3, 110–120.
  • Quin X-L., Zhong J-F., Wang Y.H., Yang B., Lan D-M., Wang F-H., 2014. 1,3-Dioleoyl-2-palmitoylglicerol rich human milk fat substitutes. Production, purification, characterization and modeling of the formulation. Eur. J. Lipid. Sci Technol. 116(3), 282–290.
  • Quin X-L., Wang Y.M., Wang Y.H., Huang H.H., Yang B., 2011. Preparation and characterization of 1,3-dioleoyl-2-palmitoylglycerol. J. Agric. Food Chem. 59(10), 5714–5719.
  • Robles A., Jimenez M.J., Esteban L., Gonzalez P.A., Martin L., Rodriguez A., Molina E., 2011. Enzymatic production of human milk fat substitutes containing palmitic and dodosahexaenoic acids at sn-2 position and oleic acid at sn-1,3 positions. LWT – Food Sci. Technol. 44, 1986–1992.
  • Silva R.C., Cotting L.N., Poltronieri P., Balcao V.M., de Almeida D.B., Gonçalves L.A.G., Grimaldi R., Gioielli L.A., 2009. The effects of enzymatic interesterification on the physical-chemical properties of blends of lard and soybean oil. LWT – Food Sci. Technol. 1275–1282.
  • Silva R.C., Soares F.A.S. D.M., Fernandes T.G., Castels A.L.D., da Silva K.C.G., Gonçalves M.I.A., Ming C.C., Gonçalves L. A.G., Gioieli L.A., 2011. Interesterificatiuon of Lard and soybean oil blends catalyzed by immobilized lipase in a continuous packed bed reactor. J. Am. Oil Chem.Soc. 88, 1925–1933.
  • Simoes T., Valero F., Tecelao, Ferreira-Dias S., 2014. Production of human milk fat substitutes catalyzed by a heterologus Rhizopur oryzae lipase and commercial lipases. J. Am. Oil. Chem. Soc. 91, 411–419.
  • Stevens E.E., Patrick T.E., Pickler R., 2009. A history of infant feeding. J. Perinat. Educ. 18(2), 32–39.
  • Sørensen A-D.M., Xu X., Zhang L., Kristensen J.B., Jacobsen Ch., 2010. Human milk fat substitute from butter fat: Production by enzymatic interesterification and evaluation of oxidative stability. J. Am. Oil Chem. Soc. 87, 185–194.
  • Soumanou M.M., Perignon M., Villeneuve P., 2013. Lipase-catalyzed interesterification for human milk fat substitutes production: A review. Eur. J. Lipid Sci. Technol. 115, 270–285.
  • Technical Report. Series 22. Food Standards Australia – New Zealand. June 2003. Canberra BC ACT 2610.
  • Wang Y-H., Mai Q-Y., Quin X-L., Yang B., Wang Z-L., Chen F-T., 2010a. Establishment of an evaluation model for human milk fat substitutes. J. Agric. Food Chem. 58, 642–649.
  • Wang Y.H., Qin X.L., Zhu Q.S., Zhou R., Yang B., Li L., 2010b. Lipase-catalyzed acidolysis of lard for the production of human milk fat substitute. Eur. Food Res. Technol. 230, 769–777.
  • Wirkowska M., Bryś J., Górska A., Ostrowska-Ligęza E., Tarnowska K., 2012. Próba wzbogacania tłuszczu mlecznego kwasami EPA i DHA. ŻNTJ 3, 46–55.
  • Yang T., Xu X., He Ch., Li L., 2003. Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chem. 80, 473–481.
  • Zhao H., Lu Z., Lu F., Bie X., Liu Z., Zeng X., 2006. Lipase-catalyzed acidolysis of lard with caprylic acid to produce structured lipid. Intern. J. Food Sci. Technol. 41, 1027–1032.
  • Zou X., Huang J., Jin Q., Guo Z., Cheong L., Xu X., Wang X., 2014. Preparation of human milk fat substitutes from lard by lipase-catalyzed interesterification based on triacylglycerol profiles. J. Am. Oil Chem. Soc. 91, 1987–1998.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d615f686-3d7e-4ea1-b7ef-0f70bfbf4b6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.