PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 4 |

Tytuł artykułu

Neuroprotective effects of allopurinol on spinal cord injury in rats: a biochemical and immunohistochemical study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Lesion in spinal cord causes a cascade of events such as the apoptosis of neurons and eventually, neurological dysfunction. Neurologic damage developing after acute spinal cord injury is also related with necrosis and free radical formation. Allopurinol, a xanthine oxidase inhibitor, was shown to have protective effects in several studies. B-cell lymphoma 2 (Bcl-2) family proteins regulate apoptosis. Apoptosis causes the death of neuronal cells, particularly neurons and oligodendrocytes in the spinal cord after lesion. Glial fibrillary acidic protein (GFAP) takes part in astrocyte and neuronal interconnection and synaptic transmission. Materials and methods: Male Sprague Dawley rats (n = 30) were divided as control, trauma, and trauma + allopurinol (i.p., 50mg/kg of body weight) groups. Animals were applied a surgical procedure causing spinal cord injury and treated for 7 days then sacrificed under anaesthesia. The spinal cords were dissected, measurements of myeloperoxidase, malondialdehyde and glutathione were performed, remaining parts were fixed in 10% formaldehyde solution for histological and immunohistochemical evaluations. Results: Biochemical results exhibited an increase in myeloperoxidase levels in trauma group but a decrease in the allopurinol treatment group similar to malondialdehyde levels. Degenerative changes in multipolar and bipolar neurons together with apoptotic changes in some glial cells were observed in the trauma group whereas, mild degenerative changes were observed after allopurinol treatment. In the trauma group, negative GFAP expression in multipolar versus bipolar neuronal processes with a reduction in glial processes around blood vessels and positive GFAP expression were observed but, a regular and parallel positive GFAP expression of glial processes around blood vessels in the allopurinol treated group was apparent. Trauma group depicted a positive Bcl-2 expression in glial cells and in motor and bipolar neurons. On the contrary, negative Bcl-2 expression was noticed in the trauma + allopurinol group. Conclusions: This study is of importance to understand the effects of allopurinol in preventing degenerative changes in nerve and glial cells related to spinal cord injuries. (Folia Morphol 2019; 78, 4: 676–683)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.676-683,fig.,ref.

Twórcy

autor
  • Department of Physiotherapy, Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, Turkey
  • Department of Histology and Embryology, Dicle University, School of Medicine, Diyarbakir, Turkey

Bibliografia

  • 1. Abrams GM, Ganguly K. Management of chronic spinal cord dysfunction. Continuum (Minneap Minn). 2015; 21(1 Spinal Cord Disorders): 188–200, doi: 10.1212/01.CON.0000461092.86865.a4, indexed in Pubmed: 25651225.
  • 2. Abrams MB, Nilsson I, Lewandowski SA, et al. Imatinib enhances functional outcome after spinal cord injury. PLoS One. 2012; 7(6): e38760, doi: 10.1371/journal.pone.0038760, indexed in Pubmed: 22723886.
  • 3. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017; 3: 17018, doi: 10.1038/nrdp.2017.18, indexed in Pubmed: 28447605.
  • 4. Akdemir H, Aşik Z, Paşaoğlu H, et al. The effect of allopurinol on focal cerebral ischaemia: an experimental study in rabbits. Neurosurg Rev. 2001; 24(2-3): 131–135, indexed in Pubmed: 11485235.
  • 5. Anderson DK, Means ED, Waters TR, et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg. 1982; 56(1): 106–113, doi: 10.3171/jns.1982.56.1.0106, indexed in Pubmed: 7054403.
  • 6. Baloğlu M, Çetin A, Tuncer MC. Neuroprotective effects of Potentilla fulgens on spinal cord injury in rats: an immunohistochemical analysis. Folia Morphol. 2018; 78(1): 1–7, doi: 10.5603/FM.a2018.0050, indexed in Pubmed: 30402877.
  • 7. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004; 555(Pt 3): 589–606, doi: 10.1113/jphysiol.2003.055913, indexed in Pubmed: 14694147.
  • 8. Canbaz S, Duran E, Ege T, et al. The effects of intracoronary administration of vitamin E on myocardial ischemia-reperfusion injury during coronary artery surgery. Thorac Cardiovasc Surg. 2003; 51(2): 57–61, doi: 10.1055/s-2003-38983, indexed in Pubmed: 12730811.
  • 9. Chen MH, Ren QX, Yang WF, et al. Influences of HIF-lα on Bax/Bcl-2 and VEGF expressions in rats with spinal cord injury. Int J Clin Exp Pathol. 2013; 6(11): 2312–2322, indexed in Pubmed: 24228092.
  • 10. Christie SD, Comeau B, Myers T, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg Focus. 2008; 25(5): E5, doi: 10.3171/FOC.2008.25.11.E5, indexed in Pubmed: 18980479.
  • 11. del Rayo Garrido M, Silva-García R, García E, et al. Therapeutic window for combination therapy of A91 peptide and glutathione allows delayed treatment after spinal cord injury. Basic Clin Pharmacol Toxicol. 2013; 112(5): 314–318, doi: 10.1111/bcpt.12023, indexed in Pubmed: 23057752.
  • 12. DeRuisseau LR, Recca DM, Mogle JA, et al. Metallothionein deficiency leads to soleus muscle contractile dysfunction following acute spinal cord injury in mice. Am J Physiol Regul Integr Comp Physiol. 2009; 297(6): R1795–R1802, doi: 10.1152/ajpregu.00263.2009, indexed in Pubmed: 19828842.
  • 13. Erkut B, Özyazıcıoğlu A, Karapolat BS, et al. Effects of ascorbic Acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug Target Insights. 2007; 2: 249–258, indexed in Pubmed: 21901079.
  • 14. Farquharson CAJ, Butler R, Hill A, et al. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002; 106(2): 221–226, doi: 10.1161/01.cir.0000022140.61460.1d, indexed in Pubmed: 12105162.
  • 15. Fouad K, Tetzlaff W. Rehabilitative training and plasticity following spinal cord injury. Exp Neurol. 2012; 235(1): 91–99, doi: 10.1016/j.expneurol.2011.02.009.
  • 16. Genovese T, Esposito E, Mazzon E, et al. Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. J Neurochem. 2009; 108(6): 1360–1372, doi: 10.1111/j.1471-4159.2009.05899.x, indexed in Pubmed: 19183262.
  • 17. Hausmann R, Riess R, Fieguth A, et al. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000; 113(2): 70–75, indexed in Pubmed: 10741479.
  • 18. Hillegass LM, Griswold DE, Brickson B, et al. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990; 24(4): 285–295, indexed in Pubmed: 1963456.
  • 19. Hirose K, Okajima K, Taoka Y, et al. Activated protein C reduces the ischemia/reperfusion-induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg. 2000; 232(2): 272–280, doi: 10.1097/00000658-200008000-00018, indexed in Pubmed: 10903607.
  • 20. Işik N, Berkman MZ, Pamir MN, et al. Effect of allopurinol in focal cerebral ischemia in rats: an experimental study. Surg Neurol. 2005; 64 Suppl 2: S5–10, doi: 10.1016/j.surneu.2005.07.040, indexed in Pubmed: 16256842.
  • 21. Jia YF, Gao HL, Ma LJ, et al. Effect of nimodipine on rat spinal cord injury. Genet Mol Res. 2015; 14(1): 1269–1276, doi: 10.4238/2015.February.13.5, indexed in Pubmed: 25730065.
  • 22. McCall MA, Gregg RG, Behringer RR, et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996; 93(13): 6361–6366, doi: 10.1073/pnas.93.13.6361, indexed in Pubmed: 8692820.
  • 23. Missler U, Wiesmann M, Wittmann G, et al. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999; 45(1): 138–141, indexed in Pubmed: 9895354.
  • 24. Moonen G, Satkunendrarajah K, Wilcox JT, et al. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent. J Neurotrauma. 2016; 33(3): 278–289, doi: 10.1089/neu.2015.3937, indexed in Pubmed: 26414192.
  • 25. Moorhouse PC, Grootveld M, Halliwell B, et al. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett. 1987; 213(1): 23–28, doi: 10.1016/0014-5793(87)81458-8, indexed in Pubmed: 3030809.
  • 26. Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006; 58(1): 87–114, doi: 10.1124/pr.58.1.6, indexed in Pubmed: 16507884.
  • 27. Palmer C, Towfighi J, Roberts RL, et al. Allopurinol administered after inducing hypoxia-ischemia reduces brain injuryin 7-day-old rats. Pediatr Res. 1993; 33(4 Pt 1): 405–411, doi: 10.1203/00006450-199304000-00018, indexed in Pubmed: 8479823.
  • 28. Pea F. Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions. Contrib Nephrol. 2005; 147: 35–46, doi: 10.1159/000082540, indexed in Pubmed: 15604604.
  • 29. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994; 124(1-2): 1–6, doi: 10.1083/jcb.124.1.1, indexed in Pubmed: 8294493.
  • 30. Ren Yi, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013; 2013: 945034, doi: 10.1155/2013/945034, indexed in Pubmed: 24288627.
  • 31. Rodríguez-Fanjul J, Durán Fernández-Feijóo C, LopezAbad M, et al. Neuroprotection with hypothermia and allopurinol in an animal model of hypoxic-ischemic injury: Is it a gender question? PLoS One. 2017; 12(9): e0184643, doi: 10.1371/journal.pone.0184643, indexed in Pubmed: 28931035.
  • 32. Roseborough G, Gao D, Chen L, et al. The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol. 2006; 168(5): 1443–1451, doi: 10.2353/ajpath.2006.050569, indexed in Pubmed: 16651612.
  • 33. Savas M, Verit A, Ciftci H, et al. Oxidative stress in BPH. JNMA J Nepal Med Assoc. 2009; 48(173): 41–45, indexed in Pubmed: 19529057.
  • 34. Shen LF, Cheng H, Tsai MC, et al. PAL31 may play an important role as inflammatory modulator in the repair process of the spinal cord injury rat. J Neurochem. 2009; 108(5): 1187–1197, doi: 10.1111/j.1471-4159.2008.05865.x, indexed in Pubmed: 19141070.
  • 35. Silva NA, Sousa N, Reis RL, et al. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014; 114: 25–57, doi: 10.1016/j.pneurobio.2013.11.002, indexed in Pubmed: 24269804.
  • 36. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010; 119(1): 7–35, doi: 10.1007/s00401-009-0619-8, indexed in Pubmed: 20012068.
  • 37. Soloniuk DS, Perkins E, Wilson JR. Use of allopurinol and deferoxamine in cellular protection during ischemia. Surg Neurol. 1992; 38(2): 110–113, doi: 10.1016/0090-3019(92)90087-4, indexed in Pubmed: 1509342.
  • 38. Stone PH. Allopurinol a new anti-ischemic role for an old drug. J Am Coll Cardiol. 2011; 58(8): 829–830, doi: 10.1016/j.jacc.2011.02.072, indexed in Pubmed: 21835318.
  • 39. Talwar S, Sandeep JA, Choudhary SK, et al. Effect of preoperative administration of allopurinol in patients undergoing surgery for valvular heart diseases. Eur J Cardiothorac Surg. 2010; 38(1): 86–90, doi: 10.1016/j.ejcts.2010.01.027, indexed in Pubmed: 20188583.
  • 40. Terada LS, Willingham IR, Rosandich ME, et al. Generation of superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol. 1991; 148(2): 191–196, doi: 10.1002/jcp.1041480202, indexed in Pubmed: 1652587.
  • 41. Terkeltaub R. Gout. Novel therapies for treatment of gout and hyperuricemia. Arthritis Res Ther. 2009; 11(4): 236, doi: 10.1186/ar2738, indexed in Pubmed: 19664185.
  • 42. Toklu HZ, Hakan T, Celik H, et al. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J Spinal Cord Med. 2010; 33(4): 401–409, doi: 10.1080/10790268.2010.11689719, indexed in Pubmed: 21061900.
  • 43. Wu Y, Yang L, Mei X, et al. Selective inhibition of STAT1 reduces spinal cord injury in mice. Neurosci Lett. 2014; 580: 7–11, doi: 10.1016/j.neulet.2013.11.055, indexed in Pubmed: 24321405.
  • 44. Yu HM, Yuan TM, Gu WZ, et al. Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection. Neuropathology. 2004; 24(2): 136–143, doi: 10.1111/j.1440-1789.2003.00539.x.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d59c2e0f-a06e-4761-bde2-e5ae6ddca680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.