PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Salix matsudana Koidz tolerance mechanisms to cadmium: uptake and accumulation, subcellular distribution, and chemical forms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salix matsudana roots exposed to 10, 50, and 100 μM Cd solutions for 24 h were carried out in order to understand the mechanisms involved in Cd tolerance and detoxification. 50 and 100 μM Cd inhibited root length significantly (P < 0.05). Cd levels in roots increased significantly with increasing Cd concentrations, and the contents of Fe, Mn, Zn, and Ca decreased significantly. A Cd-specific Leadmium Green AM dye probe showed that the meristem zone was the absorption and accumulation site of Cd in the roots. Subcellular fractionation of Cd-containing tissues indicated that about 53% of the Cd was accumulated in the cell wall of S. matsudana roots at 10 μM Cd and 65% of the Cd at 100 μM Cd, indicating that Cd binding and/or precipitation in the cell wall in roots may serve as the first barrier to reduce the cytosolic-free Cd ions. The proportion of CdE and Cdw in roots is low when compared with the other Cd chemical forms. CdHCl, Cdr, and CdHAc represent 46% (10 μM Cd), 49% (50 μM Cd), and 59% (100 μM Cd) of total Cd, and CdNaCl represents 42% (10 μM Cd), 44% (50 μM Cd), and 32% (100 μM Cd).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1739-1747,fig.,ref.

Twórcy

autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China

Bibliografia

  • 1. CHOPPALA G., SAIFULLAH BOLAN N., BIBI S., IQBAL M., RENGEL Z., KUNHIKRISHNAN A., ASHWATH N., SIK OY. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant. Sci. 33, 374, 2014.
  • 2. DALCORSO G., FARINATI S., MAISTRI S., FURINI A. How plants cope with cadmium: staking all on metabolism and gene expression. J. Integr. Plant Biol. 50, 1268, 2008.
  • 3. REDJALA T., STERCKEMAN T., MOREL J.L. Cadmium uptake by roots: contribu-tion of apoplast and of high- and low-affinity membrane transport systems. Environ. Exp. Bot. 67, 235, 2009.
  • 4. LIN Y.F., AARTS G.M. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 69, 3187, 2012.
  • 5. SANITÀ DI TOPPI L., GABBRIELLI R. Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105, 1999.
  • 6. GE W., JIAO Y.Q., SUN B.L., QIN R., JIANG W.S., LIU D.H. Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S. Afr. J. Bot. 83, 98, 2012.
  • 7. WENG B.S., XIE X.Y., WEISS D.J., LIU J.C., LU H.L., YAN C.L. Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: sub-cellular distribution, chemical forms and thiol pools. Mar. Pollut. Bull. 64, 2453, 2012.
  • 8. ZHANG C.L., ZHANG P., MO C.R., YANG W.W., LI Q.F., PAN L.P., LEE D.K. Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj. Environ. Sci. Proc. Imp. 15, 1459, 2013.
  • 9. CLEMENS S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475, 2001.
  • 10. HALL J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1, 2002.
  • 11. ZHANG W., LIN K.F., ZHOU J., ZHANG W., LIU L.L., ZHANG Q.Q. Cadmium accumulation, subcellular distribution and chemical forms in rice seedling in the presence of sulfur. Environ. Toxicol. Phar. 37, 348, 2014.
  • 12. FU X.P., DOU C.M., CHEN Y.X., CHEN X.C., SHI J.Y., YU M.G., XU J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J. Hazard. Mater. 186, 103, 2011.
  • 13. XU P.X., WANG Z.L. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: Chemical forms and tissue distribution. Environ. Exp. Bot. 96, 35, 2013.
  • 14. ERNST W.H.O., VERKLEIJ J.A.C., SCHAT H. Metal tolerance in plants. Acta. Bot. Neerl. 41, 229, 1992.
  • 15. RAUSER W.E. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem. Biophys. 31, 19, 1999.
  • 16. QIU Q., WANG Y.T., YANG Z.Y., YUAN J.G. Effects of phosphorus supplied insoil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem. Toxicol. 49, 2260, 2011.
  • 17. YU H., XIANG Z.X., ZHU Y., WANG J.L., YANG Z.J., YANG Z.Y. Subcellular andmolecular distribution of cadmium in two rice genotypes with different levels of cadmium accumulation. J. Plant Nutr. 35, 71, 2012.
  • 18. ZHAO Y.F., WU J.F., SHANG D., NING J.S., ZHAI Y.X., SHENG X.F., DING H.Y. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem. 168, 48, 2015.
  • 19. DIMITRIOU I., ARONSSON P. Landfill leachate treatment with willows and poplars-efficiency and plant response. Waste Manag. 30, 2137, 2010.
  • 20. YANG J.L., CHEN Z., WU S.Q., CUI Y., ZHANG L., DONG H., YANG C.P., LI C.H. Overexpression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz. Plant Cell Tiss. Org. 121, 1, 2015.
  • 21. DICKINSON N.M., PULFORD I.D. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ. Int. 31, 609, 2005.
  • 22. DOS SANTOS UTMAZIAN M.N., WIESHAMME G., VEGA R., WENZEL W.W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ. Pollut. 148, 155, 2007.
  • 23. SARWAR N., SAIFULLAH M.S.S., ZIA M.H., NAEEM A., BIBI S., FARID G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 90, 925, 2010.
  • 24. GU J.G., QI L.W., JIANG W.S., LIU D.H. Cadmium accumulation and its effects on growth and gas exchange in four Populus cultivars. Acta. Biol. Cracov. Bot. 49, 7, 2007.
  • 25. WEIGEL H.J., JAGER H.J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65, 480, 1980.
  • 26. WU F.B., DONG J., QIAN Q.Q., ZHANG G.P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60, 1437, 2005.
  • 27. ZHAO F.Y., HU F., ZHANG S.Y., WANG K., ZHANG C.R., LIU T. MAPKs regulate root growth by influencing auxinsignaling and cell cycle-related gene expression in cadmiumstressed rice. Environ. Sci. Pollut. Res. 20, 5449, 2013.
  • 28. JAVED M.T., LINDBERG S., GREGER M. Cadmium uptake in Elodea canadensis leaves and its interference with extra- and intra-cellular pH. Plant Biol. 16, 615, 2014.
  • 29. [JIANG W.S., LIU D.H., XU P. Cd-induced system of defence in the garlic root meristematic cells. Biol. Plantarum 53, 369, 2009.
  • 30. WANG X., LIU Y.G., ZENG G.M., CHAI L.Y., SONG X.C., MIN Z.Y., XIAO X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 62, 389, 2008.
  • 31. WIERZBICKA M.H., PRZEDPEŁSKA E., RUZIK R., OUERDANE L., POŁEĆ-PAWLAK K., JAROSZ M., SZPUNAR J., SZAKIEL A. Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231, 99, 2007.
  • 32. XUE M., ZHOU Y.H., YANG Z.Y., LIN B.Y., YUAN J.G., WU S.S. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.). Front. Environ. Sci. Eng. 8, 226, 2014.
  • 33. CARRIER P., BARYLA A., HAVAUX M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216, 939, 2003.
  • 34. LOZANORODRIGUEZ E., HERNANDEZ L.E., BONAY P., CARPENARUIZ R.O. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot. 48, 123, 1997.
  • 35. MIAO A.J., WANG W.X. Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Aquat. Toxicol. 78, 114, 2006.
  • 36. LIU J.G., QU P., ZHANG W., DONG Y., LI L., WANG M.X. Variations among rice cultivars in subcellular distribution of Cd: The relationship between translocation and grain accumulation. Environ. Exp. Bot. 107, 25, 2014.
  • 37. VERKLEIJ J.A.C., GOLAN-GOLDHIRSH A., ANTOSIEWISZ D.M., SCHWITZGUEBEL J.P., SCHRODER P. Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ. Exp. Bot. 67, 10, 2009.
  • 38. SARASWAT S., RAI J.P.N. Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev. Environ. Sci. Biotechnol. 10, 327, 2011.
  • 39. SU Y., LIU J., LU Z., WANG X., ZHANG Z., SHI G. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ. Exp. Bot. 97, 40, 2014.
  • 40. ZHANG S.J., HU F., LI H.X. Effects of earthworm mucus and amino acidson cadmium sub-cellular distribution and chemical forms in tomato seedlings. Bioresource Technol. 100, 4041, 2009.
  • 41. SALT D.E., SMITH R.D., RASKIN I. Phytoremediation. Annu Rev Plant Physiol. Plant Mol. Biol. 49, 643, 1998.
  • 42. LIU D.H., KOTTKE I., ADAM D. Localization of cadmium in the root cells of Allium cepa by energy dispersive X-ray analysis. Biol. Plant 51, 363, 2007.
  • 43. NEUMANN D., ZUR NIEDEN U., SCHWIEGER W., LEOPOLD I., LICHTENBERGER O. Heavy metal tolerance of Minuartia erna. J. Plant Physiol. 151, 101, 1997.
  • 44. LIU D.H., KOTTKE I. Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J. Biosci. 29, 329, 2004.
  • 45. BENAVIDES M.P., GALLEGO S.M., TOMARO M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21, 2005.
  • 46. SAIFULLAH S.N., BIBI S., AHMAD M., OK Y.S. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ. Earth Sci. 71, 1663, 2014.
  • 47. MARSCHNER H. Mineral nutrition of higher plants. Academic Press, NY. 1995.
  • 48. Nazar R., Iqbal N., Masood A., Khan M.R., Syeed S., Khan N.A. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Amer. J. Plant Sci. 3, 1476, 2012.
  • 49. DONG J., WU F., ZHANG G. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64, 1659, 2006.
  • 50. PENG K.J., LUO C.L., YOU W.X., LIAN C.L., LI X.D., SHEN Z.G. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L. J. Hazard. Mater. 154, 674, 2008.
  • 51. BALEN B., TKALEC M., SIKIĆ S., TOLIĆ S., CVJETKO P., PAVLICA M., VIDAKOVIĆ-CIFREK Z. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicol. 20, 815, 2011.
  • 52. ZHAO Z.Q., ZHU Y.G., KNEER R., SMITH R.E. Effect of zinc on cadmium toxicity-induced oxidative stress in winter wheat seedlings. J. Plant Nutr. 28, 1947, 2005.
  • 53. HANSCH R., MENDEL R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259, 2009.
  • 54. HART J.J., WELCH R.M., NORVELL W.A., KOCHIAN L.V. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol. Plantarum 116, 73, 2002.
  • 55. NIEBOER E., RICHARDSON D.H.S. The replacement of the nondescript term ‘heavymetals’ by a biologically and chemically significant classification of metal ions. Environ. Pollut. 1, 3, 1980.
  • 56. KOVÁCS K., KUZMANN E., VERTES A., LEVAI L., CSEH E., FODOR F. Effect of cadmium on iron uptake in cucumber roots: a Mossbauer-spectroscopic study. Plant Soil 327, 49, 2010.
  • 57. GRATÃO P.L., POLLE A., LEA P.J., AZEVEDO R.A. Making the life of heavy metal stressed plants a little easier. Funct. Plant Biol. 32, 32481, 2005

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d51a1518-cb0b-4a42-ae4f-9bd6ff0cf202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.