PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 63 | 1 |

Tytuł artykułu

Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An expression of plants response to light availability is their shade tolerance which refers to the capacity of a given plant to tolerate low light levels. Survival in a shaded environment can determine phenotypic consequences at morphological and/or physiological levels and such changes may be crucial to survive in heterogeneous and variable conditions. However, the potential plastic response of a given plant trait may be large but the observed plasticity may be lowered by resource limitations or environmental stress factors. In this context, the aim of this research was to analyze morphological, anatomical and physiological leaf traits variations of Sesleria nitida Ten. growing in different light conditions. In particular, plants growing in open (PO) and shade (PU) conditions were analyzed. The results show a 35% higher specific leaf area (SLA) in PU than in PO due to a 94% larger leaf area (LA). The higher height and width of the central and the major lateral vascular bundle in PO than in PU contribute to a higher net photosynthesis (PN) in sun than in shade conditions. Moreover, the 33% higher ratio between respiration (RD) and PN (RD/PN) in PU than in PO highlights the greater proportion of the carbon consumed by RD in the shade population requiring a greater metabolic effort for growth and maintenance. S. nitida in the shaded environment might be favored by the soil pH being a neutro-basophilous species and the larger soil water content (SWC) and mineral content contributing to maintain a positive carbon balance in this limiting condition. The plasticity analysis for open vs. the understory plants (mean plasticity index = 0.32) highlights the leaf trait variations useful to maintain a positive carbon balance where light availability is the main limiting factor. Knowledge of the capacity of S. nitida to first colonize and then modify its phenotype in response to the shade condition can contribute to a better understanding of its ecology.

Wydawca

-

Rocznik

Tom

63

Numer

1

Opis fizyczny

p.10-22,fig.,ref.

Twórcy

autor
  • Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
  • Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
  • Department of Life Earth and Environmental Science,University of L’Aquila, Via Vetoio, loc. Coppito, 67100 L’Aquila, Italy
autor
  • Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

Bibliografia

  • D.D. Ackerly, S.A. Dudley, S.E. Sultan, J. Schmitt, J.S. Coleman, C.R. Linder, D.R. Sandquist, M.A. Geber, A.S. Evans, T.E. Dawson, M.J. Lechowiczk 2000 — The evolution of plant ecophysiological traits: recent advances and future directions — BioScience, 50: 979–995.
  • G. Allard, C.J. Nelson, S.G. Pallardy 1991 — Shade effects on growth of tall fescue: I. Leaf anatomy and dry matter partitioning — Crop Sci. 31: 163–167.
  • M.A. Arntz, L.F. Delph 2001 — Pattern and process: evidence for the evolution of photosynthetic traits in natural populations — Oecologia, 127: 455–467.
  • O.K. Atkin, J.R. Evans, K. Siebke 1998 — Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment — Aust. J. Plant Physiol. 25: 437–443.
  • O.K. Atkin, E.J. Edwards, B.R. Loveys 2000 — Response of root respiration to changes in temperature and its relevance to global warming — New Phytol. 147: 141–154.
  • L. Balaguer, E. Martínez-Ferri, F Valladares, M.E. Pérez-Corona, F.J. Baquedano, F.J. Castillo, E. Manrique 2001 — Population divergence in the plasticity of the response of Quercus coccifera to the light environment — Funct. Ecol. 15: 124–135.
  • T.S. Barigah, T. Ibrahim, A. Bogard, B. Faivre-Vuillin, L.A. Lagneaul, P. Montpied, E. Dreyer 2006 — Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species — Tree Physiol. 26: 1505–1516.
  • F.A. Bazzaz 1979 — The physiological ecology of plant succession — Ann. Rev. Ecol. Syst. 10: 351–71.
  • A.G. Bengough, C.E. Mullins 1990 — Mechanical impedance to root growth: a review of experimental techniques and root growth responses — J. Soil Sci. 41:341–358.
  • S. Brullo, G.P. Giusso Del Galdo 2006 — Taxonomic remarks on Sesleria nitida Ten. (Poaceae), an orophyte endemic to Sicily and the central-southern Apennines — Plant Biosyst. 140:43–49.
  • B. Brzeziecki, F. Kienast 1994 — Classifying the life-history strategies of trees on the basis of the Grimian model — Forest Ecol. Manag. 69: 167–187.
  • N.S. Christodoulakis, K.A. Mitrakos 1987 — Structural analysis of sclerophylly in eleven evergreen phanerophytes in Greece (In: Plant response to stress., Eds: J.D. Tenhunen, F.M. Catarino, O.L. Lange, W.C. Oechel) — Springer-Verlag, Berlin, pp. 547–551
  • M.A. Damascos, E.H. Rapoport 2002 — Differences in the herb and shrub flora growing under canopy gaps and under closed canopies in a Nothofagus pumilio forest of Argentina — Rev. Chil. Hist. Nat. 75: 465–472.
  • R. Daubenmire 1974 — Taxonomic and ecologic relationships between Picea glauca and Picea engelmannii — Can. J. Bot. 52: 1545–1560.
  • R. Di Pietro 2010 — Phytosociological features of Sesleria calabrica (Poaceae), an endemic species to Pollino-Orsomarso mountains (southern Italy) — Acta Bot. Gallica, 157: 539–554.
  • L.A. Dorn, E.H. Pyle, J. Schmitt 2000 — Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs — Evolution, 54: 1982–1994.
  • D.S. Ellsworth, P.B. Reich 1993 — Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest — Oecologia, 96: 169–178.
  • J.R. Evans, H. Poorter 2001 — Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain — Plant Cell Environ. 24: 755–767.
  • J. Galmés, M. Ribas-Carbó, H. Medrano, J. Flexas 2007 — Response of leaf respiration to water stress in Mediterranean species with different growth forms — J. Arid Environ. 68: 206–222.
  • H.K. Gamage, M.S. Ashton, B.M.P. Singhakumara 2003 — Leaf structure of Syzygium spp. (Myrtaceae) in relation to site affinity within a tropical rain forest — Bot. J. Linn. Soc. 141: 365–377.
  • C.K. Ghalambor, J.K. McKay, S.P. Carroll, D.N. Reznick 2007 — Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments — Funct. Ecol. 21: 394–407.
  • T.J. Givnish 1988 — Adaptation to sun and shade: a whole-plant perspective — Aust. J. Plant Physiol. 15: 63–92.
  • L. Gómez-Aparicio, F. Valladares, R. Zamora, J.E. Quero 2005 — Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales — Ecography, 28: 757–768.
  • L. Gratani, A. Rossi, M.F. Crescente, A.R. Frattaroli 1999 — Ecologia dei pascoli di Campo Imperatore (Gran Sasso d'Italia) e Carta della Biomassa Vegetale [Ecology of grassland at Campo Imperatore (Gran Sasso Massif) and Plant Biomass Map] — Braun-Blanquetia 16: 227–247 (in Italian).
  • L. Gratani, M. Meneghini, P. Pesoli, M.F. Crescente 2003 — Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy — Trees-Struct. Funct. 17: 515–521.
  • L. Gratani, F. Covone, W. Larcher 2006 — Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis — Trees-Struct. Funct. 20: 549–558.
  • L. Gratani, M.F. Crescente, G. Fabrini, L. Varone 2008 — Growth pattern of Bidens cernua L.: relationships between RGR and its physiological and morphological components — Photosynthetica, 46: 179–184.
  • L. Gratani, M.F. Crescente, V. D'amato, C. Ricotta, A.R. Frattaroli, G. Puglielli 2014 — Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines — Photosynthetica, 52: 386–396.
  • P.K. Groom, B.B. Lamont 1997 — Xerophytic implications of increased sclerophylly: interactions with water and light in Hakea psilorrhyncha seedlings — New Phytol. 136: 231–237.
  • S. Gunn, J.F. Farrar 1999 — Effects of a 4°C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbohydrates — Funct. Ecol. 13: 12–20.
  • L. Hallik, Ü. Niinemets, I.J. Wright 2009 — Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? — New Phytol. 184: 257–274.
  • G.T. Hastwell, J.M. Facelli 2003 — Differing effects of shade-induced facilitation on growth and survival during the establishment of a chenopod shrub — J. Ecol. 91: 941–950.
  • S.H. Janse-Ten Klooster, E.J.P. Thomas, F.J. Sterck 2007 — Explaining interspecific differences in sapling growth and shade tolerance in temperate forests — J. Ecol. 95: 1250–1260.
  • R. Joffre, S. Rambal 1988 — Soil water improvement by trees in the rangelands of southern Spain — Oecol. Plant. 9: 405–422.
  • R. Joffre, S. Rambal 1993 — How tree cover influences the water balance of Mediterranean rangelands — Ecology, 74: 570–582.
  • T.T. Kozlowski 1999 — Soil compaction and growth of woody plants — Scand. J. Forest Res. 14: 596–619.
  • T.T. Kozlowski 2002 — Physiological ecology of natural regeneration of harvested and disturbed forest stands, implications for forest management — Forest Ecol. Manag. 158: 195–221.
  • N. Kuzmanovič, J. Šinžar-Sekulič, D. Lakušic 2009 — Leaf anatomy of the Sesleria rigida Heuffel ex Reichenb. (Poaceae) in Serbia — Bot. Serbica, 33: 51–67.
  • W. Larcher 2003 — Physiological Plant Ecology — Springer, Berlin, 513 pp.
  • W. Liu, S. Li, L. Su, J. Su 2013 — Variation and correlations of leaf traits of two Taxus species with different shade tolerance along the light gradient — Pol. J. Ecol. 61: 329–339.
  • C.H. Lusk, D.I. Warton 2007 — Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny — New Phytol. 176: 764–774.
  • M.M. Mendes, L.C. Gazarini, M.L. Rodrigues 2001 — Acclimation of Myrtus communis to contrasting Mediterranean light environments — effects on structure and chemical composition of foliage and plant water relations — Environ. Exp. Bot. 45: 165–178.
  • L. Middleton 2001 — Shade-tolerant flowering plants: adaptations and horticultural implications — Acta Hort. 552: 95–102.
  • M.J. Moro, F.I. Pugnaire, P.J. Haase, P. Puigdefábregas 1997 — Effect of the canopy of Retama sphaerocarpa on its understory in a semiarid environment — Funct. Ecol. 11: 425–431.
  • M. Mósena, L.R. Dillenburg 2004 — Early growth of Brazilian pine (Araucaria angustifolia [Bertol] Kuntze) in response to soil compaction and drought — Plant Soil 258: 293–306.
  • H. Muraoka, Y. Tang, H. Koizumi, I. Washitani 1997 — Combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site — Oecologia, 112: 26–34.
  • A. Nardini, F. Dimasi, M. Klepsch, S. Jansen 2012 — Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features — Tree Physiol. 32: 1434–1441.
  • B. Nicolardot, S. Recous, B. Mary 2001 — Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues — Plant Soil 228: 83–103.
  • Ü. Niinemets 2010 — Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation — Forest Ecol. Manag. 10: 1623–1639.
  • Ü. Niinemets, O. Kull, J.D. Tenhunen 1998 — An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance — Tree Physiol. 18: 681–696.
  • S. Pignatti 1982 — La Flora d'Italia [The Flora of Italy] — Edagricole, Bologna (in Italian).
  • S. Pignatti, P. Menegoni, S. Pietrosanti 2005 — Bioindicator values of vascular plants of the flora of Italy — Braun-Blanquetia, 39: 1–97.
  • A. Pintado, F. Valladares, L.G. Sancho 1997 — Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north- and south-facing populations — Ann. Bot. 80: 345–353.
  • L. Poorter 1999 — Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits — Funct. Ecol. 13: 396–410.
  • T.D. Price, A. Qvarnström, D.E. Irwin 2003 — The role of phenotypic plasticity in driving genetic evolution — Proc. R. Soc. Lond. B. 270: 1433–1440.
  • P.B. Reich, P. Bolstad 2001 — Productivity of evergreen and deciduous temperate forests (In: Terrestrial global productivity, Eds: J. Roy, B. Saugier, H.M. Mooney) — Academic Press, San Diego, pp. 565–569.
  • P.B. Reich, B.D. Kloeppel, D.S. Ellsworth, M.B. Walters 1995 — Different photosynthesis-nitrogen relations in deciduos hardwood and evergreen coniferous tree species — Oecologia, 104: 24–30.
  • I. Roth 1984 — Stratification of Tropical Forests as Seen in Leaf structures — Dr. W. Junk Publishers, The Hague, 522 pp.
  • D.M.A. Rozendaal, V.H. Hurtado, L. Poorter 2006 — Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature — Funct. Ecol. 20: 207–216.
  • S.L. Rutherford 2000 — From genotype to phenotype: buffering mechanisms and the storage of genetic information — BioEssays, 22: 1095–1105.
  • L. Sack, M.T. Tyree, N.M. Holbrook 2005 — Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees — New Phytol. 167: 403–413.
  • L. Sack, P.J. Melcher, W.H. Liu, E. Middleton, T. Pardee 2006 — How strong is intracanopy leaf plasticity in temperate deciduous trees? — Am. J. Bot. 93: 829–839.
  • C.D. Schlichting 2004 — The Role of Phenotypic Plasticity in Diversification (In: Phenotypic plasticity: functional and conceptual approaches, Eds: T.J. DeWitt, S.M. Scheiner) — Oxford University Press, Oxford, pp. 191–200.
  • B. Schmid 1992 — Phenotypic variation in plants — Evol. Trends Plants, 6: 45–60.
  • J.R. Sims, V.A. Haby 1971 — Simplified colorimetric determination of soil organic matter — Soil Sci. 112: 137–141.
  • J.F. Stuefer, H. Huber 1998 — Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species — Oecologia, 117: 1–8.
  • S.E. Sultan 1987 — Evolutionary implications of phenotypic plasticity in plants — Evol. Biol. 21: 127–178.
  • S.E. Sultan, F.A. Bazzaz 1993 — Phenotypic plasticity in Polygonum persicaria. I. Diversity and uniformity in genotypic norms of reaction to light — Evolution, 47: 1009–1031.
  • T.G. Tutin, V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb 1980 — Flora Europaea, Cambridge University Press, Cambridge.
  • F. Valladares, Ü. Niinemets 2008 — Shade tolerance, a key plant feature of complex nature and consequences — Annu. Rev. Ecol. Evol. Syst. 39: 237–257.
  • F. Valladares, S.J. Wright, E. Lasso, K. Kitajima, R.W. Pearcy 2000 — Plastic phenotypic response to light of 16 congeneric shrubs from Panamanian rainforest — Ecology, 8: 1925–1936.
  • F. Valladares, L. Balaguer, E. Martinez-Ferri, E. Perez-Corona, E. Manrique 2002 — Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? — New Phytol. 156: 457–467.
  • F. Valladares, S. Arrieta, I. Aranda, D. Lorenzo, D. Sánchez-Gómez, D. Tena, F. Suárez, J.A. Pardos 2005 — Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites — Tree Physiol. 25: 1041–1052.
  • A.F.M. van Hees 1997 — Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought — Ann. Sci. For. 54: 9–18.
  • M. van Kleunen, M. Fischer 2005 — Constraints on the evolution of adaptive phenotypic plasticity in plants — New Phytol. 165: 49–60.
  • L. Varone, L. Gratani 2007 — Physiological response of eight Mediterranean maquis species to low air temperature during winter — Photosynthetica, 45: 385–391.
  • P. Violante 2000 — Metodi di Analisi Chimica del Suolo [Chemical Methods of Soil Analysis] — Franco Angeli Editore, Milano, 536 pp. (in Italian).
  • C. Wellstein, S. Chelli, G. Campetella, S. Bartha, M. Galiè, F. Spada, R. Canullo 2013 — Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats — Biodivers. Conserv. 22: 2353–2374.
  • S.J. Wright, H.C. Muller-Landau, R. Condit, S.P. Hubbell 2003 — Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees — Ecology, 84: 3174–3185.
  • M.A. Zavala, O. Angulo, R.B. de la Parra, J.C. Lopez-Mareos 2007 — An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited — J. Theor. Biol. 244: 440–50.
  • M. Zunzunegui, F. Ain-Lhout, M.C. Díaz Barradas, L. Álvarez-Cansino, M.P. Esquivias, F. García Novo 2009 — Physiological, morphological and allocation plasticity of a semi-deciduous shrub. — Acta Oecol. 35: 370–379.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-d4d5b09c-255d-4bee-99ac-89febb0d6a4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.