PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 4 |

Tytuł artykułu

Resistance of dehydrogenases, catalase, urease and plants to soil contamination with zinc

Treść / Zawartość

Warianty tytułu

PL
Oporność dehydrogenaz, katalazy, ureazy i roślin na zanieczyszczenie gleby cynkiem

Języki publikacji

EN

Abstrakty

EN
Pot trials on growing plants were conducted in order to determine the resistance of dehydrogenases, catalase and urease as well as the plants themselves to soil contamination with zinc. The experimental variables were: the type of soil (loamy sand and sandy loam), degree of soil pollution with zinc from 0 to 600 mg Zn2+ kg-1 d.m., and plant species (oat, spring rape and yellow lupine). Samples of soil were tested to determine the activity of dehydrogenases, catalase and urease as well as its physicochemical properties. Based on the enzymatic activity of soil and the dry matter of harvested plants, the resistance of enzymes and each of the crops was determined to excessive amounts of zinc in soil with different grain-size distribution. It was concluded that zinc contamination significantly inhibited the activity of dehydrogenases, catalase and urease. With respect to their sensitivity to zinc, the enzymes were arranged in the following order: dehydrogenases > urease > catalase. The plant species and grain-size distribution of soil determined the resistance of the enzymes to zinc pollution. Dehydrogenases were most resistant to zinc in soil cropped with oat, urease – in soil under spring rape and catalase – in soil sown with yellow lupine. Dehydrogenases and urease were more resistant to the adverse influence of zinc in sandy loam than in loamy sand, contrary to catalase, which was less vulnerable in loamy sand than in sandy loam. Tolerance of plants to zinc pollution proved to be a species-specific characteristic. Yellow lupine was most sensitive to excess zinc in soil, while oat was most resistant to the said contamination out of the three examined plant species.
PL
W badaniach wegetacyjnych wazonowych, których celem było określenie oporności dehydrogenaz, katalazy i ureazy oraz roślin na zanieczyszczenie gleby cynkiem, czynnikami zmiennymi w doświadczeniu były: rodzaj utworu glebowego (piasek gliniasty i glina piaszczysta), stopień zanieczyszczenia gleby cynkiem (od 0 do 600 mg Zn2+ kg-1 s.m. gleby) oraz gatunek uprawianej rośliny (owies, rzepak jary i łubin żółty). W próbkach gleby określono aktywność dehydrogenaz, katalazy i ureazy oraz właściwości fizykochemiczne. Na podstawie aktywności enzymów oraz plonu suchej masy roślin określono oporność enzymów oraz poszczególnych gatunków roślin na nadmierne ilości cynku w glebach o zróżnicowanym składzie granulometrycznym. Stwierdzono, że zanieczyszczenie cynkiem hamuje istotnie aktywność dehydrogenaz, ureazy i katalazy. Enzymy pod względem wrażliwości na cynk uszeregowano następująco: dehydrogenazy > ureaza > katalaza. Gatunek roślin oraz skład granulometryczny gleby determinował oporność enzymów na zanieczyszczenie cynkiem. Dehydrogenazy najbardziej oporne na negatywne działanie cynku były w glebie pod uprawą owsa, ureaza – rzepaku jarego, a katalaza – łubinu żółtego. Dehydrogenazy i ureaza są bardziej oporne na działanie cynku w glinie piaszczystej niż w piasku gliniastym, a katalaza odwrotnie – bardziej oporna w piasku gliniastym niż w glinie piaszczystej. Wrażliwość roślin na zanieczyszczenie cynkiem okazała się być cechą gatunkową. Spośród badanych roślin najbardziej wrażliwy na nadmiar cynku w glebie był łubin żółty, a najmniej – owies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.929-946,fig.,ref.

Twórcy

autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland

Bibliografia

  • Abrayman S.A. 1993. Variation of enzyme activity of soil under the influence of natural and antropogenic factors. Eurasian Soil Sci., 25: 57-74.
  • Adamoa P., Denaixb L., Terribilea F., Zampella M. 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117: 347–366. DOI: 10.1016/S0016-7061(03)00133-2
  • Alef K., Nannipieri P. (eds) 1998. Methods in applied soil microbiology and biochemistry. Academic Press. Harcourt Brace & Company, Publishers, London, pp. 576.
  • Boros E., Baćmaga M., Kucharski J., Wyszkowska J. 2011. The usefulness of organic substances and plant growth in neutralizing the effects of zinc on the biochemical properties of soil. Fresen. Environ. Bull., 20(12): 3101-3109.
  • Borowik A., Wyszkowska J., Kucharski J., Baćmaga M., Tomkiel M. 2014. Pressure exerted by zinc on the nitrification process. J. Elem., 19(2): 327-338. DOI: 10.5601/jelem.2014.19.2.646
  • Boussen S., Soubrand M., Bril H., Ouerfelli K., Abdeljaouad S. 2013. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192: 227-236. DOI: 10.1016/j.geoderma. 2012.08.029.
  • Bringmark L., Lundin L., Augustaitis A., Beudert B., Dieff enbach-Fries H., Dirnböck T., Grabner M.T., Hutchins M., Kram P., Lyulko I., Ruoho-Airola T., Vana M. 2013. Trace metal budgets for forested catchments in Europe – Pb, Cd, Hg, Cu and Zn. Water Air Soil Pollut., 224: 1502. DOI: 10.1007/s11270-013-1502-8
  • BS EN ISO 11260: 2011. Soil quality. Determination of effective cation exchange capacity and base saturation level using barium chloride solution.
  • Calamai L., Lozzi I., Stotzky G., Fusi P., Ristori G.G. 2000. Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: effect on enzymatic activity and microbial utilization. Soil Biol. Biochem., 32: 815-823. DOI: 10.1016/S0038-0717(99)00211-4
  • Coppolecchia D., Puglisi E., Vasileiadis S., Suciu N., Hamon R., Beone G.M., Trevisan M. 2011. Relative sensitivity of different soil biological properties to zinc. Soil Biol. Biochem., 43: 1798-1807. DOI: 10.1016/j.soilbio.2010.06.018
  • Cordova A., Alvarez-Mona M. 1995. Behavior of zinc in physical exercise: A special reference to immunity and fatigue. Neurosci. Biobehav., 19(3): 439-445. Doi : 10.1016/0149--7634(95)00002-V
  • De Brouwere K.D., Hertigers S., Smolders E. 2007. Zinc toxicity on N2O reduction declines with time in laboratory spiked a soils and is undetectable in field contaminated soils. Soil Biol. Biochem., 39: 3167-3176. DOI: 10.1016/j.soilbio.2007.07.012
  • Dijkstra F.A., Cheng W., Johnson D.W. 2006. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol. Biochem., 38: 2519-2526. DOI: 10.1016/j.soilbio.2006.02.020
  • Djukic D., Mandic L. 2006. Microorganisms as indicators of soil pollution with heavy metals. Acta Agr. Serbica., 11: 45-55.
  • Epelde L., Becerril J.M., Hernandez-Allica J., Barrutia O., Garbisu C. 2008. Functional diversity as indicator of recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl. Soil Ecol., 39: 299-310. DOI: 10.1016/j.apsoil.2008.01.005
  • Famera M., Babek O., Grygar T. M., Novakova T. 2013. Distribution of heavy-metal contamination in regulated river-channel deposits: a magnetic susceptibility and grain-size approach; River Morava, Czech Republic. Water Air Soil Poll., 224(5): 1525. DOI: 10.1007/s11270-013--1525-1
  • Guala S., Vega Flora A., Covelo Emma F. 2013. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations. Environ. Monit. Assess., 185: 73-80. DOI: 10.1007/s10661-012-2534-z
  • Gulser F., Erdrogan E. 2008. The effects of heavy metal pollution on enzyme acivities and basal soil respiration of roadside soils. Environ. Monit. Assess., 145: 127-133. DOI: 10.1007/s10661-007-0022-7
  • Hinojosa M. B., Garcıa-Ruiz R., Vinegla B., Carreira J.A. 2004. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biol. Biochem., 36: 1637-1644. DOI: 10.1016/j.soilbio.2004.07.006
  • Hinojosa M.B., Carreira J. A., Rodríguez-Maroto J. M., García-Ruíz R. 2008. Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose – response model. Sci. Total Environ., 396: 89-99. DOI: 10.1016/j.scitotenv.2008.02.014
  • Hua L., Wang Y., Wu W., McBride M.B., Chen Y. 2008. Biomass and Cu and Zn uptake of two turfgrass specis grown in sludge compost-soil mixtures. Water Air Soil Pollut., 188: 225-234. DOI: 10.1007/s11270-007-9539-1
  • ISO 10390. 2005. Soil quality – determination of pH.
  • ISO 11261. 1995. Soil quality - Determination of total nitrogen - modified Kjeldahl method.
  • Jiang J., Wu L., Li N., Luo Y., Liu L. 2010. Effect of multiple heavy metal contamination and repeated phytextraction by Sedum plumbzincicola on soil microbial properties. Eur. J. Soil Biol., 46: 18-26. DOI: 10.1016/j.ejsobi.2009.10.001
  • Kabata-Pendias A., Pendias H. 2001. Trace elements in soils and plants. CRC Press. Boca Raton, FL (3rd ed.), 413 pp.
  • Karlen D., Ditzler C.A., Andrews S.S. 2003. Soil quality: why and how? Geoderma, 114: 145-146. DOI: 10.1016/S0016-7061(03)00039-9
  • Kawada H. 1957. An examination of the Tiurin’s method for determination of soil organic carbon and a proposed modification of the chromic acid titration method. For. Soils Japan., 8: 67-80.
  • Klute A. 1996. Methods of soil analysis. Am. Soc. of Agronomy, Madison, Wisconsin, USA, Agronomy Monographs., 9(1).
  • Kucharski J., Wieczorek K., Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem., 16(4): 577-589. DOI: 10.5601 /jelem.2011.16.4.07
  • Kunito T., Saeki K., Goto S., Hayashi H., Oyaizu H., Matsumoto S. 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Biores. Technol., 79: 135-146. DOI: 10.1016/S0960-8524(01)00047-5
  • Landi L., Renella G., Moreno J.L., Falchini L., Nannipieri P. 2000. Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biol. Fert. Soils, 32(1): 8-16. Doi : 10.1007/ s003740000205
  • Lee S.H., Lee J.S., Choi Y.J., Kim J.G. 2009. In situ stabilization of cadmium-, lead-, and zinccontaminated soil using various amendments. Chemosphere, 77: 1069-1075. DOI: 10.1016/j.chemosphere.2009.08.056
  • McCall K.A., Huang Ch., Fierke C.A. 2000. Function and mechanism of zinc metalloenzymes. J. Nutr., 130: 1437-1446.
  • Mertens J., Ruyters S., Springael D., Smolders E. 2007. Resistance and resilience of zinc tolerant nitrying communities is unaffected in log-term zinc contaminated soils. Soil Biol. Biochem., 39: 1828-1831. DOI: 10.1016/j.soilbio.2007.01.032
  • Mikanova O. 2006. Effect of heavy metals on some soil biological parameters. J. Geochem. Explor., 88: 220-223. DOI: 10.1016/j.gexplo.2005.08.043
  • Mikanova O., Kubat J., Mikhailovskaya N., Voros I., Biro B. 2001. Influence of heavy metal pollution on some soil biological parameters in the alluvium of the Litavka river. Rost. Vyroba., 47(3): 117-122.
  • Moreno J.L., Bastida F., Ros M., Hernández T., García C. 2009. Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different metal threshold levels on soil microbial activity. Eur. J. Soil Biol., 45(3): 220-228. DOI: 10.1016/j.ejsobi.2009.02.004
  • Nadgórska-Socha A., Kafel A., Kandziora-Ciupa M., Gospodarek J., Zawisza-Raszka A. 2013. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ. Sci. Pollut., 20: 1124-1134. DOI: 10.1007/s11356-012-1191-7
  • Öhlinger R. 1996. Dehydrogenase activity with the substrate TTC. In: Methods in soil biology. Schinner F., Öhlinger R., Kandeler E., Margesin R. (eds), Springer Verlag Berlin Heidelberg, 241-243.
  • Orwin K.H, Wardle D.A. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem., 36: 1907-1912. DOI: 10.1016/j.soilbio. 2004.04.036
  • Pérez-de-Mora A., Burgos P., Madejón E., Cabrera F., Jaeck el P., Schloter M. 2006. Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol. Biochem., 38: 327-341. Doi : 10.1016/j.soilbio.2005.05.010
  • PN-ISO 11047. 2001. Soil quality. Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc in aqua regia soil extracts. Flame and electrothermal atomic absorption spectrometry.
  • Praveen-Kumar J., Tarafdar C. 2003. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol. Fertil. Soils, 38: 186-189. DOI: 10.1007/s00374-003-0600-y
  • Qu J., Ren G., Chen B., Fan J., Yong E. 2013. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environ. Monit. Assess., 182(1-4): 597-606. DOI: 10.1007/s10661-011-1900-6
  • Renella G. Mench M., Landi L., Nannipieri P. 2005. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biol. Biochem., 37: 133-139. DOI: 10.1016/j.soilbio.2004.06.015
  • Renella G., Egamberiyeva D., Landi L., Mench M., Naniepieri P. 2006. Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol. Biochem., 38: 702-708. DOI: 10.1016/j.soilbio.2005.06.021
  • Sekler I., Sensi S.L., Hershfinkel M., Silverman W.F. 2007. Mechanism and regulation of cellular zinc transport. Mol.Med., 13: 337-343. DOI: 10.2119/2007-00037
  • Shumaker K.L., Begonia G. 2005. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Int. J. Environ. Res. Public Health., 2(2): 293-298. DOI: 10.3390/ijerph2005020013
  • StatSoft Inc. 2012. Statistica (data analysis software system), version 10.0. www.statsoft.com Takeda A. 2000. Movement of zinc its functional significance in the brain. Brain Res. Rev. 34: 137-148. DOI: 10.1016/S0165-0173(00)00044-8
  • Tejada M., Gonzalez J.L., Hernandez M.T, Garcia C. 2008. Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties. Biores. Technol., 99: 2872-2880. DOI: 10.1016/j.biortech.2007.06.002
  • Tran T. A. & Popova L.P. 2013. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot., 37: 1-13. DOI: 10.3906/bot-1112-16
  • Trevisan M., Coppolecchia D., Hamon R., Puglisi E. 2012. Potential nitrification, nitrate reductase, and β-galactosidase activities as indicators of restoration of ecological functions in a Zn-contaminated soil. Biol. Fertil. Soils, 48: 923-931. DOI: 10.1007/s00374-012-0684-3
  • Velmourougane K., Venugopalan M.V., Bhattacharyya T., Sarkar D., Pal D.K., Sahu A., Ray S.K., Nair K.M., Prasad J., Singh R.S. 2013. Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in India. Geoderma, 197-198, 186-192. DOI: 10.1016/j.geoderma. 2013.01.011
  • Vogeler I., Vachey A., Deurer M., Bolan N. 2008. Impact of plants on the microbial activity in soils with high and low levels of copper. Eur. J. Soil Biol., 44: 92-100. DOI: 10.1016/j.ejsobi.2007.12.001
  • Wang A.S., Scott A.J., Chaney R.L., Delorme T.A., McIntosh M. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem., 38: 1451-1462. DOI: 10.1016/j.soilbio.2005.11.001
  • Wyszkowska J., Borowik A., Kucharski M., Kucharski J. 2013. Applicability of biochemical indices to quality assessmenet of soil pulluted with heavy metals. J. Elem., 18(4): 733-756. DOI: 10.5601/jelem.2013.18.4.504
  • Wyszkowska J., Kucharski J., Borowik A. Boros E. 2008. Response of bacteria to soil contamination with heavy metals. J. Elem., 13(3): 443-453.
  • Wyszkowska J., Kucharski M., Kucharski J. 2010. Activity of β-glucosidase, arylsuphatase and phosphatases in soil contaminated with copper. J. Elem., 15(1): 213-226.
  • Wyszkowski M., Radziemska M. 2013. Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomas and content of nitrogen compounds. Water Air Soil Pollut., 224(7): 1619. DOI: 10.1007/s11270-013-1619-9.
  • Zaborowska M., Wyszkowska J., Kucharski J. 2006. Microbial activity in zinc contaminated soil of different pH. Pol. J. Environ. Stud., 15(2a): 569-574.
  • Zalewska M. 2012. Response of perennial ryegrass (Lolium perenne L.) to soil contamination with zinc. J. Elem., 17(2): 329-343. DOI: 10.5601/jelem.2012.17.2.14

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d4bd126c-f0a2-4983-a154-046dd9eb4c10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.