PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 3 |

Tytuł artykułu

Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The growing resistance of microorganisms towards antibiotics has become a serious global problem. Therapeutics with novel chemical scaffolds and/or mechanisms of action are urgently needed to combat infections caused by multidrug resistant pathogens, including bacteria, fungi and viruses. Development of novel antimicrobial agents is still highly dependent on the discovery of new natural products. At present, most antimicrobial drugs used in medicine are of natural origin. Among the natural producers of bioactive substances, Actinobacteria continue to be an important source of novel secondary metabolites for drug application. In this review, the authors report on the bioactive antimicrobial secondary metabolites of Actinobacteria that were described between 2011 and April 2018. Special attention is paid to the chemical scaffolds, biological activities and origin of these novel antibacterial, antifungal and antiviral compounds. Arenimycin C, chromopeptide lactone RSP 01, kocurin, macrolactins A1 and B1, chaxamycin D as well as anthracimycin are regarded as the most effective compounds with antibacterial activity. In turn, the highest potency among selected antifungal compounds is exhibited by enduspeptide B, neomaclafungins A-I and kribelloside D, while ahmpatinin i Bu, antimycin A1a, and pentapeptide 4862F are recognized as the strongest antiviral agents.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

3

Opis fizyczny

p.259-272,fig.,ref.

Twórcy

  • Department of Environmental Health and Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
  • Department of Environmental Health and Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
autor
  • Department of Environmental Health and Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
autor
  • Department of Environmental Health and Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
autor
  • Department of Environmental Health and Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland

Bibliografia

  • Abdelfattah MS, Arai MA, Ishibashi M. 2016. Bioactive secondary metabolites with unique aromatic and heterocyclic structures obtained from terrestrial actinomycetes species. Chem Pharm Bull. 64:668–675.
  • Abdelkader MSA, Philippon T, Asenjo JA, Bull AT, Goodfellow M, Ebel R, Jaspars M, Rateb ME. 2018. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. J Antibiot (Tokyo). 71:425–431.
  • Bae M, Kim H, Moon K, Nam S-J, Shin J, Oh K-B, Oh D-C. 2015. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett. 17:712–715.
  • Baltz RH. 2011. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol. 38(6):657–666.
  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 80:1–43.
  • Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Muñoz G, McGrath EL, Urrabaz-Garza R, Gao J, et al. 2016. A Screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 20:259–270.
  • Blázquez A-B, Saiz J-C. 2016. Neurological manifestations of Zika virus infection. World J Virol. 5:135.
  • Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Hörer S, Schmid A, Bolek W, et al. 2005. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokyo). 58:346–349.
  • Butler MS, Blaskovich MA, Cooper M. 2017. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). 70:3–24.
  • Carlson S, Tanouye U, Omarsdottir S, Murphy BT. 2014. Phylum-specific regulation of resistomycin production in a Streptomyces sp. via microbial coculture. J Nat Prod. 78(3):381–387.
  • Chater KF. 2016. Recent advances in understanding Streptomyces. F1000Research. 5:2795.
  • Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Liu M, Dai H, Liu X, Song F, Zhang L. 2013. Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol. 97:3885–3892.
  • Chen M-H, Chang S-S, Dong B, Yu L-Y, Wu Y-X, Wang R-Z, Jiang W, Gao Z-P, Si S-Y. 2018. Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Adv. 8:5138–5144.
  • Chen Y, Liu R-H, Li T-X, Huang S-S, Kong L-Y, Yang M-H. 2017. Enduspeptides A-F, six new cyclic depsipeptides from a coal mine derived Streptomyces sp. Tetrahedron. 73:527–531.
  • Cheng C, Othman EM, Reimer A, Grüne M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR. 2016. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 57:2786–2789.
  • Cruz JCS, Maffioli SI, Bernasconi A, Brunati C, Gaspari E, Sosio M, Wellington E, Donadio S. 2017. Allocyclinones, hyperchlorinated angucyclinones from Actinoallomurus. J Antibiot (Tokyo). 70:73–78.
  • Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. 2017. Biodiversity of Actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Mar Drugs. 15:286.
  • Dalisay DS, Williams DE, Wang XL, Centko R, Chen J, Raymond J. 2013. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PlosOne. 8:1–14.
  • Fabricio M. Locatelli K-SG and DU. 2016. Effects of trace metal ions on secondary metabolism and morphological development of streptomycetes. Metallomics. 8:469–480.
  • Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim B-Y, del Carmen Montero-Calasanz M, Andrews BA, Bull AT. 2017. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek. 110:1133–1148.
  • Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y. 2015. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Löffler FE, editor. Appl Environ Microbiol. 81(9):3086–3103.
  • Hashizume H, Sawa R, Yamashita K, Nishimura Y, Igarashi M. 2017. Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4. J Antibiot (Tokyo). 70:699–704.
  • Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W. 2015. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo). 68:206–209.
  • Hensler ME, Jang KH, Thienphrapa W, Vuong L, Tran DN, Soubih E, Lin L, Haste NM, Cunningham ML, Kwan BP, et al. 2014. Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo). 67:549–553.
  • Hou J, Liu P, Qu H, Fu P, Wang Y, Wang Z, Li Y, Teng X, Zhu W. 2012. Gilvocarcin HE: a new polyketide glycoside from Streptomyces sp. J Antibiot (Tokyo). 65:523–526.
  • Idris H, Nouioui I, Asenjo JA, Bull AT, Goodfellow M. 2017. Lentzea chajnantorensis sp. nov., an actinobacterium from a very high altitude Cerro Chajnantor gravel soil in northern Chile. Antonie Van Leeuwenhoek. 110:795–802.
  • Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K. 2012. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot (Tokyo). 65:355–359.
  • Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C, Thamchaipenet A. 2011. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod. 74(4):670–674.
  • Igarashi M, Sawa R, Yamasaki M, Hayashi C, Umekita M, Hatano M, Fujiwara T, Mizumoto K, Nomoto A. 2017. Kribellosides, novel RNA 5’-triphosphatase inhibitors from the rare actinomycete Kribbella sp. MI481-42F6. J Antibiot (Tokyo). 70:582–589.
  • Jang KH, Nam S-J, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W. 2013. Anthracimycin, a potent anthrax antibiotic from a marine-derived Actinomycete. Angew Chemie Int Ed. 52: 7822–7824.
  • Jiang Z, Guo L, Chen C, Liu S, Zhang L, Dai S, He Q, You X, Hu X, Tuo L, et al. 2015. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J Antibiot (Tokyo). 68:771–774.
  • Kang H, Brady SF. 2014. Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc. 136(52):18111–18119.
  • Khalil ZG, Salim AA, Vuong D, Crombie A, Lacey E, Blumenthal A, Capon RJ. 2017. Amycolatopsins A-C: antimycobacterial glycosylated polyketide macrolides from the Australian soil Amycolatopsis sp. MST-108494. J Antibiot (Tokyo). 70:1097–1103.
  • Kim S-H, Ha T-K-Q, Oh WK, Shin J, Oh D-C. 2016. Antiviral indolosesquiterpenoid xiamycins c-e from a halophilic actinomycete. J Nat Prod. 79:51–58.
  • Komaki H, Ichikawa N, Oguchi A, Hamada M, Tamura T. 2015. Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus Herbidospora. BMC Res Notes. 8:548.
  • Lacret R, Oves-Costales D, Gómez C, Díaz C, de la Cruz M, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F. 2014. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs. 13:128–140.
  • Latha S, Sivaranjani G, Dhanasekaran D. 2017. Response surface methodology : A non- conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol. 43(5):567–582.
  • Lee L-H, Cheah Y-K, Mohd Sidik S, Ab Mutalib N-S, Tang Y-L, Lin H-P, Hong K. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol. 28:2125–2137.
  • Li S, Tian X, Niu S, Zhang W, Chen Y, Zhang H, Yang X, Zhang W, Li W, Zhang S, et al. 2011. Pseudonocardians A-C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar Drugs. 9:1428–1439.
  • Lin Z, Koch M, Pond CD, Mabeza G, Seronay RA, Concepcion GP, Barrows LR, Olivera BM, Schmidt EW. 2014. Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J Antibiot (Tokyo). 67:121–126.
  • Liu L-L, Xu Y, Han Z, Li Y-X, Lu L, Lai P-Y, Zhong J-L, Guo X-R, Zhang X-X, Qian P-Y. 2012. Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis. Mar Drugs. 10:2571–2583.
  • Liu X, Gan M, Dong B, Zhang T, Li Y, Zhang Y, Fan X, Wu Y, Bai S, Chen M, et al. 2012. 4862F, a new inhibitor of HIV-1 protease, from the culture of Streptomyces I03A-04862. Molecules. 18:236–243.
  • Lu C, Liao G, Zhang J, Tan H. 2015. Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes. Microb Cell Fact. 14:173.
  • Lu Y, Shao M, Wang Y, Qian S, Wang M, Wang Y, Li X, Bao Y, Deng C, Yue C, et al. 2017. Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against Methicillin-Resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2. Molecules. 22:251.
  • Mahajan G, Thomas B, Parab R, Patel ZE, Kuldharan S, Yemparala V, Mishra PD, Ranadive P, D’Souza L, Pari K, Sivaramkrishnan H. 2013. In vitro and in vivo activities of antibiotic PM181104. Antimicrob Agents Chemother. 57:5315–5319.
  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S. 2013. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 169(4):262–78.
  • Maxwell A, Lawson D. 2003. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem. 3:283–303.
  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339–W346.
  • Medema MH, Fischbach MA. 2015. Computational approaches to natural product discovery. Nat Chem Biol. 11:639–648.
  • Mondol M, Shin H. 2014. Antibacterial and antiyeast compounds from marine-derived bacteria. Mar Drugs. 12:2913–2921.
  • Moon K, Chung B, Shin Y, Rheingold AL, Moore CE, Park SJ, Park S, Lee SK, Oh K, Shin J. 2014. Pentacyclic antibiotics from a tidal mud flat-derived actinomycete. J Nat Prod. 78(3):524–529.
  • Newman DJ, Cragg GM. 2016. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 79:629–661.
  • Niu S, Li S, Chen Y, Tian X, Zhang H, Zhang G, Zhang W, Yang X, Zhang S, Ju J, Zhang C. 2011. Lobophorins E and F, new spirotetronate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127. J Antibiot (Tokyo). 64:711–716.
  • O’Neill J. 2016. Tackling drug-resistant infections globally: final report and recommandations [Internet]. London (UK): The review on antimicrobial resistance; [cited 2018 May 8]. Available from https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
  • Oh D, Poulsen M, Currie CR, Clardy J. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated. Org Lett. 13:15–18.
  • Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot (Tokyo). 70(8):865–870.
  • Pan H-Q, Zhang S-Y, Wang N, Li Z-L, Hua H-M, Hu J-C, Wang S-J. 2013. New spirotetronate antibiotics, Lobophorins H and I, from a South China sea-derived Streptomyces sp. 12A35. Mar Drugs. 11:3891–3901.
  • Pascoalino BS, Courtemanche G, Cordeiro MT, Gil LHVG, Freitas-Junior L. 2016. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research. 5:2523.
  • Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, et al. 2017. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131–18. Sci Rep. 7:42382.
  • Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, et al. 2011. Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol. 18:955–965.
  • Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci. 8:3218–3227.
  • Rajnisz A, Guśpiel A, Postek M, Ziemska J, Laskowska A, Rabczenko D, Solecka J. 2016. Characterization and optimization of biosynthesis of bioactive secondary metabolites produced by Streptomyces sp. 8812. Pol J Microbiol. 65:51–61.
  • Rao M, Wei W, Ge M, Chen D, Sheng X. 2013. A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043. Nat Prod Res. 27:2190–2195.
  • Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H, Harrison WTA, Okoro CK, Asenjo JA, Andrews BA, Ferguson G, et al. 2011a. Chaxamycins A-D, bioactive ansamycins from a hyperarid desert Streptomyces sp. J Nat Prod. 74(6):1491–1499.
  • Rateb ME, Houssen WE, Harrison WTA, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M. 2011b. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod. 74(9):1965–1971.
  • Rathod BB, Korasapati R, Sripadi P, Reddy Shetty P. 2018. Novel actinomycin group compound from newly isolated Streptomyces sp. RAB12: isolation, characterization, and evaluation of antimicrobial potential. Appl Microbiol Biotechnol. 102:1241–1250.
  • Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. 2016. Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv. 6:96250–96262.
  • Rausch K, Hackett BA, Weinbren NL, Reeder SM, Sadovsky Y, Hunter CA, Schultz DC, Coyne CB, Cherry S. 2017. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 18:804–815.
  • Raveh A, Delekta PC, Dobry CJ, Peng W, Schultz PJ, Blakely PK, Tai AW, Matainaho T, Irani DN, Sherman DH, Miller DJ. 2013. Discovery of potent broad spectrum antivirals derived from marine actinobacteria. Ianora A, editor. PLoS One. 8:e82318.
  • Riquelme C, Dapkevicius MDE, Miller AZ, Charlop-Powers Z, Brady S, Mason C, Cheeptham N. 2016. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Appl Microbiol Biotechnol. 101(2):843–857.
  • Saiz J-C, Martín-Acebes MA. 2017. The race to find antivirals for Zika virus. Antimicrob Agents Chemother. 61:e00411–17.
  • Sato S, Iwata F, Yamada S, Katayama M. 2012. Neomaclafungins A-I: Oligomycin-class macrolides from a marine-derived Actinomycete. J Nat Prod. 75:1974–1982.
  • Sawa R, Kubota Y, Umekita M, Hatano M, Hayashi C, Igarashi M. 2018. Quadoctomycin, a 48-membered macrolide antibiotic from Streptomyces sp. MM168-141F8. J Antibiot (Tokyo). 71:91–96.
  • Shin B, Kim B, Cho E, Oh K, Shin J, Goodfellow M. 2016. Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191. J Nat Prod. 79(7):1886–1890.
  • Singh B, Gupta V, Passari A. 2018. New and future developments in microbial biotechnology and bioengineering. Actinobacteria: diversity and biotechnological applications. Amsterdam, Oxford, Cambridge: Elsevier.
  • Singh SB, Dayananth P, Balibar CJ, Garlisi CG, Lu J, Kishii R, Takei M, Fukuda Y, Ha S, Young K. 2015. Kibdelomycin is a bactericidal broad-spectrum aerobic antibacterial agent. Antimicrob Agents Chemother. 59:3474–3481.
  • Solecka J, Zajko J, Postek M, Rajnisz A. 2012. Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol. 7:373–390.
  • Solecka J, Ziemska J, Rajnisz A, Laskowska A, Guśpiel A. 2013. Promieniowce – Występowanie i wytwarzanie związków biologicznie czynnych. Postep Mikrobiol. 52:83–91.
  • Song Y, Huang H, Chen Y, Ding J, Zhang Y, Sun A, Zhang W, Ju J. 2013. Cytotoxic and Antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J Nat Prod. 76(12):2263–2268.
  • Sun P, Maloney KN, Nam S-J, Haste NM, Raju R, Aalbersberg W, Jensen PR, Nizet V, Hensler ME, Fenical W. 2011. Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marinederived Streptomyces sp. Bioorg Med Chem. 19:6557–6562.
  • Thong WL, Shin-ya K, Nishiyama M, Kuzuyama T. 2015. Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance: structural elucidation and biosynthesis. J Nat Prod. 79(4):857–864.
  • Um S, Choi TJ, Kim H, Kim BY, Kim S, Lee SK, Oh K, Shin J, Oh D. 2013. Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a Volcanic Island. J Org Chem. 78(24):12321–12329.
  • WHO. 2014. Antimicrobial resistance: global report on surveillance [Internet]. Geneva (Switzerland): World Health Organization; [cited 2018 May 8]. Available from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1
  • WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics [Internet]. Geneva (Switzerland): World Health Organization; [cited 2018 May 8]. Available from http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1
  • Wink J, Mohammadipanah F, Hamedi J, editors. 2017. Biology and Biotechnology of Actinobacteria. Cham (Switzerland): Springer Nature.
  • Wu Z, Li S, Li J, Chen Y, Saurav K, Zhang Q, Zhang H, Zhang W, Zhang W, Zhang S, Zhang C. 2013. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs. 11:2113–2125.
  • Xin W, Ye X, Yu S, Lian X-Y, Zhang Z. 2012. New capoamycintype antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar Drugs. 10:2388–2402.
  • Xu J, Gu K, Zhang D-J, Li Y-G, Tian L. 2017. Ghanamycins A and B, two novel γ-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16. J Antibiot (Tokyo). 70:733–736.
  • Yang J, Yang Z, Yin Y, Rao M, Liang Y, Ge M. 2016. Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseus. J Antibiot (Tokyo). 69:62–65.
  • Yu L, Trujillo ME, Miyanaga S, Saiki I, Igarashi Y. 2014. Campechic acids A and B: anti-invasive polyether polyketides from a soil-derived Streptomyces. J Nat Prod. 77(4):976–982.
  • Zhang H, Wang H, Wang Y, Cui H, Xie Z, Pu Y, Pei S, Li F, Qin S. 2012. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol Lett. 332(2):105–112.
  • Ziemska J, Rajnisz A, Solecka J. 2013. New perspectives on antibacterial drug research. Cent Eur J Biol. 8:943–957.
  • Zotchev SB. 2012. Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol. 158:168–175.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d4a1db05-0821-4c1f-a197-5417ddc8c83b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.