PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 01 |
Tytuł artykułu

Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the toxic effect of silver nanoparticles was studied in seedlings of economicallyimportant food crop mung bean (Vigna radiata L.). The plants were grown in 1/2 MS agar medium containing 0, 5, 10, 20, and 50 mg/L of silver nanoparticles for 21 days. The toxic effects were studied using different parameters such as growth, chlorophyll, and proline contents, reactive oxygen species (ROS) generation, lipid peroxidation, changes in mitochondrial membrane potential (DWm), and oxidative stress responsive gene expression. The shoot length and weight was significantly reduced upon exposure to 50 mg/L of silver nanoparticles. Significant reduction in root elongation and weight was observed upon exposure to 20 and 50 mg/L of silver nanoparticles. The total chlorophyll content significantly reduced after exposure to 50 mg/L of silver nanoparticles. However, proline content was increased significantly upon exposure to 20 and 50 mg/L of silver nanoparticles. The hydrogen peroxide level and lipid peroxidation levels increased significantly in roots after exposure to 20 and 50 mg/L of silver nanoparticles. Histochemical staining with nitroblue tetrazolium showed a concentration-dependant increase in superoxide formation in roots. Roots treated with 20, 70-dichlorodihydro-fluorescein diacetate and 3, 30-diaminobenzidine showed a concentration-dependant increase in ROS generation. Exposure to increasing concentrations of silver nanoparticles has resulted in changes in DWm in roots as revealed by increased Rhodamine 123 fluorescence. Gene expression analysis using real-time polymerase chain reaction showed changes in the relative mRNA expression of CuZn-SOD, CAT, and APX genes indicating the plants’ antioxidative defense responses under silver nanoparticle stress.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
01
Opis fizyczny
Article: 1719 [11 p.], fig.,ref.
Twórcy
autor
  • Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
autor
  • Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
Bibliografia
  • Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y (2003) Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J Biochem 134:43–49
  • Apel K, Hirt H (2004) Review Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32:577–584
  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. CRC Crit Rev Plant Sci 24:23–58
  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139
  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732
  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in waste water and waste water sludge-Evidence and impacts. Waste Manag 30:504–520
  • Chiang HH, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis during development and in response to desiccation. Plant, Cell Environ 18:1280–1290
  • Costa CS, Vieira Ronconi JV, Daufenbach JF, Goncalves CL, Rezin GT, Streck EL, da Silva Paula MM (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cel Biochem 342:51–56
  • David D, Abdallah O (2012) Silver nanoparticles toxicity effect on photosystem II photochemistry of the green alga Chlamydomonas reinhardtii treated in light and dark conditions. Toxicol Environ Chem 94:1536–1546
  • Davletova S, Rhizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281
  • Desikan R, Mackerness AHS, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172
  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589
  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt Wheat (Triticum aestivum L.) growth in a sand matrix. Environ Science Technol 47:1082–1090
  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J of Integ Plant Biol 50:1318–1326
  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J of Hazard Mat 15:318–332
  • Farkas J, Peter H, Christian P, Urrea JAG, Hassellöv M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Inter 37:1057–1062
  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97
  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J of Exp Bot 53:1249–1254
  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427
  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollution 159:1551–1559
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arcs of Biochem Biophy 125:189–198
  • Hsin YH, Chena CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS and JNKdependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139
  • Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Science Technol 31:1880–1886
  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollution 158:2900–2905
  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640
  • Kubo A, Hikaru S, Tanaka K, Tanaka K, Kondo N (1992) Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol 18:691–701
  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499
  • Li N, Sioutas C, Cho A, Schmitz D, Mistra C, Sempf JM (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in enzymology, 148th edn. Academic Press, Waltham, pp 350–382
  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585
  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 10:5743–5748
  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sust Chem Eng 1:768–778
  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechnanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532
  • Mittler R (2002) Review Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964
  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends in Plant Sci 12:125–134
  • Nowack B, Krug HF, Height M (2011) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183
  • Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J of Hazardous Mat 186:436–442
  • Organization for Economic Cooperation and Development (OECD) (1984) Terrestrial Plants, growth test. OECD guidelines for testing of chemicals, vol 208. OECD, Paris
  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticles toxicity effect on growth and cellular viability of the aquatic plant Lemma gibba. Environ Toxicol Chem 32:902–907
  • Passow H, Rothstein A, Clarkson TW (1961) The general pharmacology of the heavy metals. Pharmacol Rev 13:185–224
  • Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J of Air Waste Manage 60:770–781
  • Rangachari PK, Matthews J (1985) Effect of Ag⁺ on isolated bullfrog gastric mucosa. Amer J Physiol 248:443–449
  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Plant Physiol 115:137–149
  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell Environ 29:1532–1544
  • Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23:75–78
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660
  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915
  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609
  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8
  • Smirnoff N (1998) Plant resistance to environmental stress. Current Opinion in Biotechnol 9:214–219
  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479
  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194
  • USEPA (1996) Ecological test guidelines (OPPTS 850, 4200): seed germination/root elongation toxicity test Vanninia C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7:1893–1897
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Zijverden MV, Sips AJAM, Geertsma RE (2009) Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotechnol 3:109–138
  • Yin L, Colman BP, McGill BM, Wright JP, Bernhard ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:1–7
  • Zhu JK (2002) Review Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d475d0aa-7a0a-4a97-a38c-fff32211db9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.