PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 09 |

Tytuł artykułu

Isolation and characterization of Ras-related GTP-binding protein (Ran) from Lepidium latifolium L. reveals its potential role in regulating abiotic stress tolerance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lepidium latifolium L., a weed distributed in the Ladakh region of Himalayan range, belongs to Brassicaceae family and reported to withstand low temperature stress <-20°C. RACE primers were designed from EST encoding Ras-related GTP-binding like protein (FG618354) from L. latifolium and full-length LlaRan (GU014818) was obtained. Its cDNA sequence consisted of 672 bp long open-reading frame, 5'UTR of 95 bp and 3'UTR of 115 bp, respectively. The predicted Lepidium RAN protein encodes a 223 aa protein of 25.59 kDa and pI 6.08. In silico characterization of LlaRan suggested that it has a universal RAN domain across species and likely to follow similar functions. Transcript accumulation studies in response to cold stress suggested that it is an early down-regulated gene but a late upregulated gene. Quantitative analysis using real-time PCR revealed differential regulation of the transcript not only under cold stress but also under the effect of stress regulators like jasmonic acid, salicylic acid, calcium, abscisic acid and ethylene which suggests a possible crosstalk between different pathways where LlaRan may have an important role to play. Thus, LlaRan is a candidate gene for engineering plants against abiotic stresses after its further functional validation in model plants.

Wydawca

-

Rocznik

Tom

36

Numer

09

Opis fizyczny

p.2353-2360,fig.,ref.

Twórcy

autor
  • Defence Institute of Bio-Energy Research, Goraparao, P.O.Arjunpur, 263139 Haldwani, India
  • Department of Biotechnology, Kumaun University, Bhimtal Campus, 263136 Bhimtal, Uttarakhand, India
  • University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, 110078 New Delhi, India
autor
  • Defence Institute of Bio-Energy Research, Goraparao, P.O.Arjunpur, 263139 Haldwani, India
autor
  • Defence Institute of Bio-Energy Research, Goraparao, P.O.Arjunpur, 263139 Haldwani, India
  • Department of Biotechnology, Kumaun University, Bhimtal Campus, 263136 Bhimtal, Uttarakhand, India
autor
  • Department of Biotechnology, Kumaun University, Bhimtal Campus, 263136 Bhimtal, Uttarakhand, India
autor
  • Defence Institute of Bio-Energy Research, Goraparao, P.O.Arjunpur, 263139 Haldwani, India

Bibliografia

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402
  • Aslam M, Sinha VB, Singh RK, Anandhan S, Pande V, Ahmed Z (2010) Isolation of cold stress responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiol Plant 32(1):205–210
  • Aslam M, Grover A, Sinha VB, Fakher B, Pande V, Yadav PV, Gupta SM, Anandhan S, Ahmed Z (2012) Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 39(10):9629–9638
  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34 (Web Server):W369–W373
  • Bischoff F, Molendijk A, Rajendrakumar C, Palme K (1999) GTP-binding proteins in plants. Cell Mol Life Sci CMLS 55(2): 233–256
  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127
  • Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64(15):1891–1914
  • de Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147(3):296–306
  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(suppl 2):W465–W469
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell Online 12(7):1117–1126
  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15(1):607–660
  • Guo Y, Halfter U, Ishitani M, Zhu J-K (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell Online 13(6):1383–1400
  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249(4969):635–640
  • Hewezi T, Léger M, El Kayal W, Gentzbittel L (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57(12):3109–3122
  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300
  • Kaur G, Kumar S, Nayyar H, Upadhyaya H (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194(6):457–464
  • Kim S-H, Roux SJ (2003) An Arabidopsis ran binding protein, AtRanBP1c, is a co-activator of ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization. Planta 216(6):1047–1052
  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya H, Berger J, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33(3):779–787
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta (BBA) Gene Regul Mech 1819(2):86–96
  • Ohnishi S, Miyoshi T, Shirai S (2010) Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environ Exp Bot 69(1):56–62
  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9): e36–e36
  • Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(suppl 1):D61–D65
  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224–228
  • Ristic Z, Ashworth E (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 172(2–4):111–123
  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GT (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143(3):1429–1438
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York
  • Sinha VB, Grover A, Ahmed Z, Pande V (2014) Isolation and functional characterization of DNA damage repair protein (DRT) from Lepidium latifolium L. Comptes Rendus Biol 337(5): 302–310
  • Sowiński P, Rudzińska-Langwald A, Adamczyk J, Kubica I, Fronk J (2005) Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J Plant Physiol 162(1):67–80
  • Stormo GD (2000) Gene-finding approaches for eukaryotes. Genome Res 10(4):394–397
  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49(3):433–442
  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP binding proteins. Physiol Rev 81(1):153–208
  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22): 4673–4680
  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109(1):15–30
  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl 2):W71–W74
  • Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140(1):91–101
  • Yoshida R, Kanno A, Kameya T (1996) Cool temperature-induced chlorosis in rice plants (II. effects of cool temperature on the expression of plastid-encoded genes during shoot growth in darkness). Plant Physiol 112(2):585–590
  • Zang A, Xu X, Neill S, Cai W (2010) Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J Exp Bot 61(3):777–789. doi:10.1093/jxb/erp341
  • Zheng Z-L, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44(1):1–9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d46fb946-b483-49f6-a9f8-b9d90dcb3aa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.