БИОЛОГИЧЕСКАЯ ОЦЕНКА СПЕЦИАЛЬНЫХ ВИДОВ ЖИРОВ ДЛЯ ПИЩЕКОНЦЕНТРАТОВ

Б. И. КАДЫКОВ (ЛЕНИНГРАД)

В настоящей работе предполагается дать биологическую оценку гидрированному жиру, который применяется для производства пищевых концентратов — вторых блюд (в основном каш).

Ранее вырабатывались пищевые концентраты, в состав которых входили говяжий и гидрожир. Как показали наблюдения, гидрожиры с температурой плавления $38-42^{\circ}$ С и твердостью около 200~г/см трудно усваиваются организмом; при длительном хранении они приобретают неприятный привкус и промасливают этикетку.

В связи с этим была разработана технология гидрирования хлопкового масла, которая позволяла получать жир с иодным числом 66—68, температурой плавления не выше 36,5°C и твердостью от 550 до 700 г/см. Производственные испытания такого гидрожира показали, что он обладает определенными преимуществами по сравнению с ранее применявшимися жирами.

Поскольку гидрированные растительные масла содержат мало непредельных кислот, представилось целесообразным дать биологическую оценку этому жиру, при использовании его в производстве, применяемому в пищевых концентратах.

Биологические наблюдения проводились на 4 группах молодых белых крыс-самцов, по 40 животных в каждой группе, с первоначальным средним весом 72—75 г. Животные содержались в индивидуальных клетках. Первая группа животных (контрольная) получала полноценную синтетическую диету, где в качестве белка использовался казеин; источником углеводов служил крахмал, а источником жира—подсолнечное масло, обладающее достаточно высокой биологической активностью, благодаря наличию в нем большого количества непредельных жирных кислот и фосфатидов. Вторая группа крыс содержалась на той же синтетической диете, но источником жира служил

хлопковый гидрожир. Третья группа животных получала свежие пищевые концентраты овсяной каши, включавшие $10^{0}/_{0}$ хлопкового гидрожира. Четвертая группа животных содержалась на денатурированных пищевых концентратах овсяной каши с таким же содержанием хлопкового гидрожира, но со сниженной органолептической оценкой.

Следует указать, что все экспериментальные диеты были выравнены по основным веществам. Для этого в рацион 3 и 4 групп крыс, которые получали пищеконцентраты, добавлялось недостающее качество белка (казеина). Что касается жира, то животные этих групп получали в диете только тот жир, который содержался в пищеконцентратах. Таким образом, рацион всех групп животных включал: белок — $18^{0}/_{0}$, жир — $30^{0}/_{0}$, углеводы — $52^{0}/_{0}$ (по калорийности). В диету животных всех групп вводились также рыбный жир и дрожжи, как богатые источники витаминов А и Д и группы "В". Солевая смесь включалась в диету в количестве 0,2 г на 20 больших калорий. Пища и вода давались без ограничения.

Пищевые концентраты для третьей группы животных хранились в холодильнике при температуре $+4^{\circ}$ С на протяжении всего периода опыта. Другая партия пищевых концентратов, которая включалась в рацион крыс 4 группы, подвергалась ускоренной денатурации в атмосфере воздуха в термостате при $+35^{\circ}$ С в течение 35 дней, а затем также хранилась при $+4^{\circ}$ С.

В течение 14—16 недель нормального по калорийности питания велись наблюдения за изменением веса животных (еженедельное взвешивание) и их общим состоянием.

По истечении указанного срока часть животных в каждой группе забивалась и подвергалась химическим исследованиям. В органах и тканиях крыс определялось содержание липидов, белков и минеральных веществ. Остальные животные всех 4 групп переводились на частичное голодание, заключающееся в уменьшении калорийности пищи до 17 калорий (при полном исключении жира) и забивались на 3, 6 и 9 день частичного голодания, после чего их органы и ткани также подвергались химическому исследованию.

Результаты 14—16 недельных наблюдений показали, что животные 3 и 4 группы, получавшие пищевые концентраты имели к концу опыта наибольший вес. Существенных различий в росте и развитии этих групп животных не отмечалось. Однако, к концу опыта, начиная с 11 недели, наблюдалось небольшое отставание в весе крыс, содержащихся на денатурированных пищевых концентратах. Такой благопринятый рост и развитие этих двух групп животных, повидимому,

объясняется тем, что овсяная крупа богата витаминами группы "В" и фосфатидами.

1 группа крыс (контрольная), получавшая нерафинированное подсолнечное масло, по росту и развитию несколько приближалась к предыдущим группам животных.

2 группа животных, имевшая в синтетической диете хлопковый гидрожир, плохо росла и развивалась, значительно отстала в весе от всех выше рассмотренных групп крыс, в особенности, от 3 и 4 групп, в рационе которых был тот же хлопковый гидрожир, но введенный в концентраты. В связи с этим на 13 неделе опыта из 2-ой группы животных было отобрано 9 крыс со средним групповым весом и к их обычному рациону была добавлена тройная доза тиамина (60 γ). Оставшиеся животные во 2-ой группе перестали прибавлять в весе, тогда как группа крыс, получавших тот же рацион, но с дополнительным количеством тиамина за три недели прибавила в весе в среднем на 55 г. Это указывает на повышение пищевой ценности хлопкового гидрожира при увеличении содержания тиамина в диете.

Эффективность диеты

Таблица 1

группы N°	Диета	Потребленная калорийность	Привес в г за опыт	Затрачено ка- лорий на 1 г привеса	Резервная калорийность
1.	Масло подсолнечное нерафинированное				
	контроль	5108	186	27	421
2.	Хлопковый гидро- жир	3908	122	31	234
3.	Каша овсяная све- жая	5148	219	23	502
4.	Каша овсяная дена- турированная	5010	211	23	531

Данные по эффективности диеты представлены в таблице 1. Животные, содержащиеся на хлопковом гидрожире, потребили и затратили почти одинаковое количество калорий на 1 г привеса. Наименьшее количество пищевых веществ потребили крысы 2 группы (синтетическая диета с хлопковом гидрожиром). Однако затрата калорий на 1 грамм привеса у этих животных самая высокая. Это согласуется с данными резервной калорийности, под которой понимается сумма белков, липидов и углеводов, выраженных в калориях. Таким образом, наименее эффективной оказалась диета с хлопковом гидрожиром (2 группа).

При исследовании химического состава органов и тканей наибольшее накопление жира и белка было отмечено у животных, содержащихся на пищевых концентратах. Самое низкое их содержание наблюдалось у крыс 2 группы, получавших диету с хлопковым гидрожиром. В то же время в группе животных с той же диетой, но с дополнительным введением тиамина, содержание жира и белка приближалось к контрольной группе (табл. 2).

Таблица 2 Содержание белков и липидов в период нормального по калорийности питания в граммах на крысу

N°	Диета	Содержание		
	A # 0 1 w	белка	липидов	
1.	Масло подсолнечное нера-			
	финированное контроль	45,9	32,9	
2.	Хлопковый гидрожир	36,1	17,9	
3.	Хлопковый гидрожир $+$ 60			
	тиамина	42,6	26,3	
4.	Каша овсяная свежая	52,8	36,3	
5.	Каша овсяная денатуриро-			
	ванная	51,4	40,8	

Аналогичные результаты были получены в отношении содержания липидов и белков печени.

Химический анализ органов и тканей крыс, проведенный в период частичного голодания (3, 6, 9 дней) также показал, что у крыс 2 группы, получавших в диете хлопковой гидрожир, использование липидов и белков было наименьшим.

Таким образом, в опытах на животных дана биологическая оценка хлопкового гидрожира при использовании его в крупяных концентратах.

В дополнение к ранее полученным данным по технологическим свойствам хлопкового гидрожира и его стойкости при хранении установлено:

- 1. Крупяные концентраты (каша овсяная) с хлопковым гидрожиром (с йодным числом 67—68, температурой плавления не выше $36,5^{\circ}$ С и твердостью 550—700 г/см), содержащие достаточное количество витаминов группы "В" и, в частности, тиамина, достаточно хорошо сохраняют свою пищевую ценность даже в случаях длительного их хранения (при $+35^{\circ}$ С в течение 35 дней).
- 2. Хлопковый гидрожир, введенный в синтетическую диету при обычном в ней содержании витаминов, обнаружили некоторую пище-

вую недостаточность, которая устранялось при добавлении в диету утроенной дозы тиамина.

3. Учитывая проведенные исследования можно считать, что гидрированные жиры желательно вводить в концентраты, содержащие достаточные количества витаминов группы "В".

Streszczenie

BIOLOGICZNA OCENA SPECJALNYCH TYPÓW TŁUSZCZÓW STOSOWANYCH W PRODUKCJI KONCENTRATÓW SPOŻYWCZYCH

B. I. KADYKOW (LENINGRAD)

Dodatkowo, prócz otrzymanych uprzednio danych dotyczących charakterystyki technologicznej uwodornionego oleju bawełnianego i jego trwałości przy składowaniu, stwierdzono, że:

- 1. Koncentraty spożywcze (kasza owsiana) z dodatkiem uwodornionego oleju bawełnianego (charakteryzującego się liczbą jonową 67—68, temperaturą topnienia nie wyższą niż 36,5° i twardością 550—700 g/cm) i odpowiedniej ilości witamin grupy B, a szczególnie tiaminy, w stopniu zadowalającym zachowują swe wartości odżywcze nawet w przypadku długotrwałego składowania (w temp. 35°C w ciągu 35 dni).
- 2. Uwodorniony olej bawełniany zastosowany do pokarmu o zwykłej zawartości witamin wykazał pewien niedobór wartości odżywczych, który był kompensowany przez dodanie potrójnej dawki tiaminy.
- 3. Uwzględniając wyniki powyższych badań można zalecić stosowanie tłuszczów uwodornionych jako dodatków do koncentratów spożywczych zawierających wystarczające ilości witamin grupy B.

Résumé

APRÉCIATION BIOLOGIQUE DES CORPS GRAS SPÉCIAUX UTILISÉS DANS LA FABRICATION DES CONCENTRÉS ALIMENTAIRES

B. I. KADYKOV (LENINGRAD)

En dehors de données, obtenues auparavant et concèrnant les caractères technologiques de l'huile de coton hydrogénée ainsi que sa stabilité au cours du stockage, il a été constaté ce qui suit:

- 1. Les concentrés de céréales (gruaux de seigle) additionnés d'huile de coton hydrogénée (indice d'iode 67—68, température de fusion en dessous de 36,5°C, dureté 550—700 g/cm) et d'une quantité appropriée de vitamines du groupe B, et en particulier de la thiamine, conservent dans une mesure satisfaisante leurs valeurs nutritives, même en cas d'un long stockage (35 jours à la température de 35°C).
- 2. L'huile de coton hydrogénée utilisée dans l'alimentation, d'une teneur normale en vitamines, démontra une certaine insuffisance de valeur nutritive, qui a été compensée par une triple dose de la thiamine.
- 3. Compte tenu des études effectuées on peut recommander l'utilisation des corps gras hydrogénés comme additifs aux concentrés alimentaires suffisamment riches en vitamines du groupe B.

Summary

BIOLOGICAL ASSESSMENT OF SPECIAL TYPES OF FATS FOR FOOD CONCENTRATES

B. I. KADYKOW (LENINGRAD)

On the basis of experiments on animals, the biological value of hydrogenated cottonsed oil used with cereal concentrates was established. It was shown that:

- 1. Cereal concentrates (containing a sufficient quantity of vitamin B) to which hydrogenated cottonseed oil had been added, retained their nutritive value for 35 days at 35°C.
- 2. In a synthetic diet, with the usual vitamin content, hydrogenated cottonseed oil has shown certain deficiencies in nutritive value, which could be corrected by the addition of a threefold dose of tiamine.
- 3. Incorporation of hydrogenated oils is desirable only in concentrates having a sufficient vitamin B content.

Zusammenfassung

DER BIOLOGISCHE WERT VON FETTEN FÜR LEBENSMITTELKONZENTRATE

B. I. KADYKOW (LENINGRAD)

Mittels Tierversuchen wurde der biologische Wert des in Getreidekonzentraten verwendeten hydrierten Baumwollöls untersucht. Es wurde festgestellt, dass:

— Getreidekonzentrate (mit einem genügenden Gehalt an Vitamin B) mit einem Zusatz des hydrierten Baumwollöls bei + 35° während 35 Tagen ihren Nährwert behalten;

- der Nährwert des hydrierten Baumwollöls in einem Regime auf Basis synthetischer Lebensmittel mit Aitamingehalt gewisse Unzulänglichkeiten aufwies, was durch Zugabe einer dreifachen Tiamindosis korrigiert werden konnte;
- die Zugabe hydrierter Öle nur für Kanzentrate mit genügenden Gehalt an Vitamin B empfehlenswert ist.

Резюме

БИОЛОГИЧЕСКАЯ ОЦЕНКА СПЕЦИАЛЬНЫХ ВИДОВ ЖИРОВ ДЛЯ ПИЩЕКОНЦЕНТРАТОВ

Б. И. КАДЫКОВ (ЛЕНИНГРАД)

На основании опытов на животных дана биологическая оценка хлопкового гидрожира при использовании его в крупных концентратах. Установлено следующие:

- 1. Крупяные коцентраты (каша овсяная) с хлопковым гидрожиром (с йодным числом 550—700 г/см), содержащие достаточное количество витаминов группы "В" и, в частности, тиамина, достаточно хорошо сохраняют свою пищевую ценность даже в случаях длительного их хранения (при +35°C в течение 35 дней).
- 2. Хлопковый гидрожир, введенный в синтетическую диету при обычном в ней содержании витаминов, обнаружил некоторую пищевую недостаточность которая устранялась при добавлении в диету устроенной дозы тиамина.
- 3. Учитывая проведенные исследования, можно считать, что гидрированные жиры желательно вводить в концентраты, содержащие достаточные количества витаминов группы "В".