PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |

Tytuł artykułu

MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.315-329,fig.,ref.

Twórcy

autor
  • Department of Emergency Medicine, People’s Hospital of Lishui, Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, P.R.China
autor
  • Department of Critical Care Medicine, People’s Hospital of Lishui, Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, P.R.China
autor
  • Department of Neurosurgery, People’s Hospital of Lishui, Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, P.R.China

Bibliografia

  • 1. Moen, I. and Stuhr, L.E.B. Hyperbaric oxygen therapy and cancer – a review. Target Oncol. 7 (2012) 233–242.
  • 2. Depret, J., Teboul, J.L., Benoit, G., Mercat, A. and Richard, C. Global energetic failure in brain-dead patients. Transplantation 60 (1995) 966–971.
  • 3. Pastorekova, S., Zatovicova, M. and Pastorek, J. Cancer-associated carbonic anhydrases and their inhibition. Curr. Pharm. Design 14 (2008) 685–698.
  • 4. Kulchitsky, V.A., Talabaev, M.V., Chernov, A.N., Grigoriev, D.G., Demidchik, Y.E., Shcharbin, D.G., Chekan, N.M., Kazbanov, V.V., Gurinovich, T.A., Gordienko, A.I., Sergeeva, E.K., Potkin, V.I. and Kalunov, V.N. Improving the efficiency of chemotherapeutic drugs by the action on neuroepithelial tumors. In.: Glioma – Exploring Its Biology and Practical Relevance (Anirban Ghosh, Ed.) 21 (2011) 465–486.
  • 5. Kamal, A., Bharathi, E.V., Reddy, J.S., Ramaiah, M.J., Dastagiri, D., Reddy, K., Viswanath, A., Reddy, T.L., Shaik, T.B., Pushpavalli, S.N. and Bhadra, M.P. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur. J. Med. Chem. 46 (2011) 691–703.
  • 6. Cai, X., Hu, J., Xiao, J. and Cheng, Y. Dendrimer and cancer: a patent review (2006-present). Expert Opin. Ther. Pat. 23 (2013) 515–529.
  • 7. Shcharbin, D., Dzmitruk, V., Shakhbazau, A., Goncharova, N., Seviaryn, I., Kosmacheva, S., Potapnev, M., Pedziwiatr-Werbicka, E., Bryszewska, M., Talabaev, M., Chernov, A., Kulchitsky, V., Caminade, A.-M. and Majoral, J.-P. Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carriers. Pharmaceutics 3 (2011) 458–473.
  • 8. Ziemba, B., Matuszko, G., Bryszewska, M. and Klajnert, B. Influence of dendrimers on red blood cells. Cell. Mol. Biol. Lett. 17 (2012) 21–35.
  • 9. Lazniewska, J., Milowska, K., Katir, N., El Kadib, A., Bryszewska M., Majoral, J.-P. and Gabryelak, T. Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cell. Mol. Biol. Lett. 18 (2013) 459–478.
  • 10. Kulchitsky, V.A., Potkin, V.I., Zubenko, Yu.S., Chernov, A.N., Talabaev, M.V., Demidchik, Y.E., Petkevich, S.K., Kazbanov, V.V., Gurinovich, T.A., Roeva, M.O., Grigoriev, D.G., Kletskov, A.V. and Kalunov, V.N. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors. Med. Chem. 8 (2012) 22–32.
  • 11. Garkun, Y.S., Yakubovich, N.V., Denisov, A.A., Molchanov, P.G., Emel'janova, A.A., Pashkevich, S.G. and Kulchitsky, V.A. Generation of excitatory postsynaptic potentials in the hippocampus after functional modification of glycosaminoglycans. Bull. Exp. Biol. Med. 145 (2008) 395–397.
  • 12. Tabata, Y. Nanomaterials of drug delivery systems for tissue regeneration. Meth. Mol. Biol. 300 (2005) 81–100. expression in kidney proximal tubular cells. Am. J. Physiol. Renal. Physiol. 304 (2013) F1266–F1273.
  • 13. Hirahara, I., Ishibashi, Y., Kaname, S., Kusano, E. and Fujita, T. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol. Dial. Transplant. 24 (2009) 437–447.
  • 14. Yang, X., Ye, R., Kong, Q., Yang, Q., Dong, X. And Yu , X. CD40 is expressed on rat peritoneal mesothelial cells and upregulates ICAM-1 production. Nephrol. Dial. Transplant. 19 (2004) 1378–1784.
  • 15. Grassmann, A., Gioberge, S., Moeller, S. and Brown G. ESRD patients in 2004: Global overview of patient numbers, treatment modalities and associated trends. Nephrol. Dial. Transplant. 20 (2005) 2587–2593.
  • 16. Loureiro, J., Schilte, M., Aguilera, A., Albar-Vizcaíno, P., Ramírez-Huesca, M., Pérez-Lozano, M.L., González-Mateo, G., Aroeira, L.S., Selgas, R., Mendoza, L., Ortiz, A., Ruíz-Ortega, M., van den Born, J., Beelen, R.H. and López-Cabrera, M. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol. Dial. Transplant. 25 (2010) 1098–1108.
  • 17. Slaby, O., Svoboda, M., Michalek, J. and Vyzula, R. Micrornas in colorectal cancer: Translation of molecular biology into clinical application. Mol. Cancer 8 (2009) 102.
  • 18. Acloque, H., Thiery, J.P. and Nieto, M.A. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 9 (2008) 322–326.
  • 19. Korpal, M. and Kang, Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5 (2008) 115–119.
  • 20. Long, J., Wang, Y., Wang, W., Chang, B.H. and Danesh, F.R. MicroRNA29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286 (2011) 11837–11848.
  • 21. Gebeshuber, C.A., Kornauth, C., Dong, L., Sierig, R., Seibler, J., Reiss, M., Tauber, S., Bilban, M., Wang, S., Kain, R., Böhmig, G.A., Moeller, M.J., Gröne, H.J., Englert, C., Martinez, J. and Kerjaschki, D. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19 (2013) 481–487.
  • 22. Kalluri, R. and Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112 (2003) 1776–1784.
  • 23. Wang, S., Chen, Q., Simon, T.C., Strebeck, F., Chaudhary, L., Morrissey, J., Liapis, H., Klahr, S. and Hruska, K.A. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 63 (2003) 2037–2049.
  • 24. Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D. Strutz, F., and Kalluri, R. BMP-7 counteracts TGF-beta1- induced epithelial-tomesenchymal transition and reverses chronic renal injury. Nat. Med. 9 (2003) 964–968.
  • 25. Yu, M.A., Shin, K.S., Kim, J.H., Kim,Y.I., Chung, S.S., Park, S.H., Kim, Y.L. And Kang, D.H. HGF and BMP-7 ameliorate high glucose- induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J. Am. Soc. Nephrol. 20 (2009) 567–581.
  • 26. Margetts, P.J. and Bonniaud, P. Basic mechanisms and clinical implications of peritoneal fibrosis. Perit. Dial. Int. 23 (2003) 530–541.
  • 27. Zhou, Q., Yang, M., Lan, H. and Yu, X. miR-30a negatively regulates TGFβ1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am. J. Pathol. 183 (2013) 808–819.
  • 28. Margetts, P.J., Kolb, M., Galt, T., Hoff, C.M., Shockley, T.R. and Gauldie, J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12 (2001) 2029–2039.
  • 29. Vesuna, F., van Diest, P., Chen, J.H. and Raman, V. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem. Biophys. Res. Commun. 367 (2008) 235–241.
  • 30. Barrallo-Gimeno, A. and Nieto, M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132 (2005) 3151–3161.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d4139094-e8b5-4e96-b223-5b8074df0d64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.