PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 4 |

Tytuł artykułu

Polyphenol profiles and antioxidant properties of ethanol extracts from Osmanthus fragrans (thunb.) lour. flowers

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study evaluated the antioxidant activity of ethanol extracts of Osmanthus fragrans (Thunb.) Lour. flowers (EOF) and identifi ed phenolic compounds in EOF using liquid chromatography-mass spectrometry. Nine compounds, 3-O-caffeoylquinic acid, caffeic acid 4-O-glucoside, salidroside, 5-O-coumaroylquinic acid, 4-O-coumaroylquinic acid, acteoside, ligustroside, fucosterol and arjunolic acid were identifi ed. To our knowledge, caffeic acid 4-O-glucoside, 5-O-coumaroylquinic acid and 4-O-coumaroylquinic acid have not been detected in EOF. In vitro antioxidant activity analysis demonstrated that EOF possessed strong DPPH and ABTS radicals scavenging activity with EC50 values at 0.26±0.06 mg/mL and 0.36±0.01 mg/mL, respectively, and reducing power with Ab0.5 value at 13.04±0.16 μg/mL. The value of oxygen radical absorbance capacity (ORAC) was 333.23±13.39 μmol Trolox/g. Antioxidant activity assay in human umbilical vein endothelial cells (HUVEC) showed that the activity of superoxide dismutase (SOD) was signifi cantly improved and the reactive oxygen species (ROS) was removed effectively from cells when treated with EOF of 300~3000 μg/L.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

4

Opis fizyczny

p.317-325,fig.,ref.

Twórcy

autor
  • College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
  • Department of Functional Food and Bio-Active Compounds, Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
autor
  • College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
autor
  • Departments of Internal Medicine and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
autor
  • College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
  • Department of Functional Food and Bio-Active Compounds, Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China

Bibliografia

  • 1. Arfan M., Amin H., Karamać M., Kosińska A., Shahidi F., Wiczkowski W., Amarowicz R., Antioxidant activity of extracts of Mallotus philippinensis fruit and bark. J. Food Lipids, 2007, 14, 280–297.
  • 2. Barnes S., Kirk M., Cowardt L., Isofl avones and their conjugates in soy foods: extraction conditions and analysis by HPLC-ES- MS spectrometry. J. Agric. Food Chem., 1994, 42, 2466–2474.
  • 3. Calhoun D.A. , Jones D., Textor S., Goff D.C., Murphy T.P., Toto R.D., et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension, 2008, 51, 1403–1419.
  • 4. Clifford M.N ., Johnston K.L., Knight S., Kuhnert N., Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food. Chem., 2003, 51, 2900–2911.
  • 5. de Rijke E.,Zappey H., Ariese F., Gooijer C., Brinkman U.A., Liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments. J. Chromatogr. A, 2003, 984, 45–58.
  • 6. Hatano T., Rei Edamatsu M.H., Akitane Mori HY.F., Yasuhara T., Yoshida T., Okuda T., Effects of the interaction of tannins with co-existing substances. VI.i) Effects of tanins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl. Chem. Pharm. Bull., 1989, 37, 2016–2021.
  • 7. Hung C.Y., T sai Y.C., Li K.Y., Phenolic antioxidants isolated from the flowers of Osmanthus fragrans. Molecules, 2012, 17, 10724–10737.
  • 8. Huang B., Chen H.Q., Shao, L.Q., The ethanol extract of Osmanthus fragrans attenuates Porphyromonas gingivalis lipopolysaccharide-stimulated inflammatory effect through the nuclear factor erythroid 2-related factor-mediated antioxidant signalling pathway. Arch. Oral. Biol., 2015, 60, 1030–1038.
  • 9. Hwa J.S., Mu n L., Kim H.J., Seo H.G., Lee J.H., Kwak J.H., Lee D.U., Chang K.C., Genipin selectively inhibits TNF-alphaactivated VCAM-1 but not ICAM-1 expression by upregulation of PPAR-gamma in human endothelial cells. Korean J. Physiol. Pharmacol., 2011, 15, 157–162.
  • 10. Khan R.A., Khan M.R., Sahreen S., Ahmed M., Assessment of fl avonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem. Cent. J., 2012, 6, art. no 43.
  • 11. Kim Y.S., A hn Y., Hong M.H., Joo S.Y., Jeong M.H., Kim K.H., et al., Carvedilol inhibits expressions of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, monocyte chemoattractant-1, and interleukin-8 via NF-B inhibition in human endothelial cells. Korean Circ. J., 2005, 35, 576–582.
  • 12. Kis E., Rajn ai Z., Ioja E., Heredi Szabo K., Nagy T., Mehn D., Krajcsi P., Mouse Bsep ATPase assay: a nonradioactive tool for assessment of the cholestatic potential of drugs. J. Biomol. Screen., 2009, 14, 10–15.
  • 13. Lee D.G., Le e S.M., Bang M.H., Park H.J., Lee T.H., Kim Y.H., Kim J.Y., Baek N.I., Lignans from the flowers of Osmanthus fragrans var. aurantiacus and their inhibition effect on NO production. Arch. Pharm. Res., 2011a, 34, 2029–2035.
  • 14. Lee D.G., Park J.H., Yoo K.H., Chung I.S., Lee Y.H., Lee J.K., Han D.S., Cho S.M., Baek N.I., 24-Ethylcholesta-4,24(28)-dien-3,6-dione from Osmanthus fragrans var. aurantiacus flowers inhibits the growth of human colon cancer cell line, HCT-116. J. Korean Soc. Appl. Bi., 2011b, 54, 206–210.
  • 15. Lee H.H., Li n C.T. Yang L.L., Neuroprotection and free radical scavenging effects of Osmanthus fragrans. J. Biomed. Sci., 2007, 14, 819–827.
  • 16. Lenz T.L., M onaghan M.S., Lifestyle modifi cations for patients with hypertension. J. Am. Pharm. Assoc., 2008, 48, e92–9; quiz e100–2.
  • 17. Li A.N., Li S., Li H.B., Xu D.P., Xu X.R., Chen F., Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods, 2014, 6, 319–330.
  • 18. Lin L.Z., Ha rnly J.M., Identifi cation of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem., 2010, 120, 319–326.
  • 19. Liu J., Naka mura S., Xu B., Matsumoto T., Ohta T., Fujimoto K., Ogawa K., Fukaya M., Miyake S., Yoshikawa M., Matsuda H., Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus. J. Nat. Med., 2015, 69, 135–141.
  • 20. Ma Y.L., Ved ernikova I., Van den Heuvel H., Claeys M., Internal glucose residue loss in protonated O-diglycosyl fl avonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom., 2000, 11, 136–144.
  • 21. Mertz C., Ga ncel A.L., Gunata Z., Alter P., Dhuique-Mayer C., Vaillant F., Perez A.M., Ruales J., Brat P., Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J. Food Compos. Anal., 2009, 22, 381–387.
  • 22. Omura H., Ho nda K., HayashI N., Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J. Chem. Ecol., 2000, 26, 655–666.
  • 23. Orak H.H., Karamać M., Orak A., Amarowicz R., Antioxidant potential and phenolic compounds of some widely consumed Turkish white bean (Phaseolus vulgaris L.) varieties. Pol. J. Food Nutr. Sci., 2016, 66, 253–260.
  • 24. Ouyang X.L., W ei L.X., Wang H.S., Pan Y.M.,. Antioxidant activity and phytochemical composition of Osmanthus fragrans’ pulps. South Afr. J. Bot., 2015, 98, 162–166.
  • 25. Oyaizu M., Stu dies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nut., 1986, 44, 307–315 (in Japanese; English abstract).
  • 26. Re R., Pellegr ini N., Proteggente A., Pannala A., Yang M., RiceEvans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26, 1231–1237.
  • 27. Spanos G.A., Wrolstad R.E., Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J. Agric. Food Chem., 1990, 38, 1565–1571.
  • 28. Tian Q., Li D. , Patil B.S., Identifi cation and determination of flavonoids in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) by high-performance liquid chromatography with electrospray ionisation mass spectrometry and photodiode array ultraviolet detection. Phytochem. Anal., 2002, 13, 251–256.
  • 29. Wang L.M., Li M.T., Jin W.W., Li S., Zhang S.Q., Yu L.J., Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chem., 2009, 114, 233–236.
  • 30. Weidner S., Amarowicz R., Karamać M., Dąbrowski G., Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to pre-harvest sprouting. Eur. Food Res. Technol., 1999, 210, 109–113.
  • 31. Wu L.C., Chang L. H., Chen S.H., Fan N.C., Ho J.A.A., Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: A potential natural and functional food flavor additive. LWT – Food Sci. and Technol., 2009, 42, 1513–1519.
  • 32. Yin W., Liu J.Q ., Zhang G.S., Chemical constituents of Osmanthus fragrans fruits. Zhongguo Zhong Yao Za Zhi, 2013, 38, 4329–4334 (in Chinese; English abstract). 33. Xiong L., Yang J., Jiang Y., Lu B., Hu Y., Zhou F., Mao S., Shen C., Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci., 2014, 79, C517–C525.
  • 34. Yoo K.H., Park J. H., Lee D.K., Fu Y.Y., Baek N.I., Chung I.S., Pomolic acid induces apoptosis in SK-OV-3 human ovarian adenocarcinoma cells through the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways. Oncol. Lett., 2013, 5, 386–390.
  • 35. Zeng Y., Deng M., Lv Z., Peng Y., Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus, 2014, 3, 315.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d3db4ed1-a945-44f0-ae3e-26afceb47817
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.