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Abstract Very high-resolution modelling of the northeastern Baltic Proper shows that pref- 
erentially elongated along the flow, submesoscale inhomogeneities of hydrodynamic fields or 
stripes of the order of 10—20 km in length and 1 km in width, are typical for summer season 
both in surface mixed layer and for interior layers which are not directly exposed to atmo- 
spheric forcing. In surface layer, the presence of stripes is supported by the remote sensing 
imagery and their vertical extension is comparable with the mixed layer depth (approx. 5—8 
m). In the interior layers, the vertical extension of stripes is considerably larger (approx. 10—50 
m) and their slopes exceed the isopycnal slope. Four competitive mechanisms of formation of 
the mesoscale striped texture are considered: stirring of large-scale inhomogeneities by the 
eddy field, the classic, inviscid adiabatic fluid symmetric instability, the McIntyre instability, 
and the strain-induced frontogenesis. Based on the instability criteria and the growth rates and 
geometry of the disturbances, the classic symmetric instability and the strain-induced fron- 
togenesis are probably responsible for the formation of submesoscale striped texture in the 
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surface layer, while in the interior layers, the strain-induced frontogenesis and hypothetically 
the McIntyre instability can be essential. Stirring of large-scale inhomogeneities by the eddy 
field could be responsible for formation of striped texture in a passive tracer concentration and 
in temperature and salinity in the presence of thermohaline gradients on isopycnic surfaces 
(thermoclinicity), but it does not imply formation of stripes in dynamically active tracers, such 
as vertical vorticity, horizontal gradients of buoyancy, etc. 
© 2021 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

igh resolution images of the sea surface both provided 
y remote sensing and simulated by very high-resolution 
irculation models display a variety of elongated subme- 
oscale structures — thin filaments or stripes of the order 
f 1 km wide and 10—20 km long (e.g. Barkan et al., 2019 ;
rannigan et. al., 2017 ; Capet et al., 2008 ; Choi et al., 
017 ; D’Asaro et al., 2018 ; Gula et al., 2016 ; Jing et al.,
021 ; Karimova et al., 2012 ; McWilliams, 2016 ; Munk et al., 
000 ; Onken et al., 2020 ; Qiu et al., 2014 ; Schubert et al.,
020 ; Väli et al., 2017 , 2018 ; Yu et al., 2019 ; Zhurbas et al.,
019a,b ). Such elongated structures seem natural to asso- 
iate with symmetric instabilities (SI) which are geomet- 
ically typified by overturning circulations about an axis 
ligned with the basic geostrophic flow — rolls (i.e. the 
isturbances are two-dimensional (2D) — they do not de- 
end on the along-flow coordinate) ( Bachman et al., 2017 ). 
he SI occurs in baroclinic flows when the Ertel potential 
orticity q is opposite in sign of the Coriolis parameter f
 Thomas et al., 2013 ): 

q < 0 , q = ( fk + ∇ × u ) · ∇b = q vert + q bc 

q vert = 

(
f − u y + v x 

)
b z = ς abs b z 

 bc = 

(
w y − v z 

)
b x + ( u z − w x ) b y 

(1) 

ere u is the velocity, k is the vertical unit vector, b = 

g( ρ − ρ0 ) / ρ0 is the buoyancy defined in terms of the grav- 
tational acceleration g, potential density ρ and constant 
eference density ρ0 , ζabs = f − u y + v x is the absolute ver- 
ical vorticity. In more detail, the instability condition fq < 

 implies a variety of instabilities such as ( Bachman et al., 
017 ) 

ravitational instability : b z < 0 (2) 

nertial instability : fς abs < 0 , b z > 0 (3) 

ymmetric instability : 
f q bc < 0 , | f q bc | > f q vert , f q vert > 0 , b z > 0 

(4) 

f the flow is in geostrophic balance, we can apply the 
hermal wind relation ( u z = −b y / f, v z = b x / f, w = 0 ) and 
ewrite the expression for q bc in Eq. (1) as 

 bc = −(
b 

2 
x + b 

2 
y 

)
/ f (5) 

nd further the SI condition as ( Haine and Marshall, 1998; 
oskins, 1974 ) 

i 
ς abs 

f 
= Ri ( 1 + Ro ) < 1 , Ro > −1 , b z > 0 (6) 
2 
here Ri = N 

2 / ( u 

2 
z + v 2 z ) = f 2 N 

2 / ( b 

2 
x + b 

2 
y ) is the geostrophic

ichardson number, Ro = ( −u y + v x ) / f is the gradient 
ossby number defined as the ratio of vertical relative vor- 
icity ζ = −u y + v x to the planetary vorticity f, and N 

2 = b z 

s the buoyancy frequency squared. 
Eq. (5) says that the baroclinicity of the fluid always 

orks to reduce the potential vorticity and the SI occurs 
hen the baroclinicity term q bc of the Ertel potential vor- 
icity q becomes prevalent over the vertical stratification 
nd vorticity term q vert . Such a prevalence is more likely to 
ccur in the upper mixed layer where the vertical stratifica- 
ion is commonly weak and can be further weakened rela- 
ive to the baroclinicity term that can increase due to atmo- 
pheric forcing (e.g. due to cross-front advection of dense 
ater over light by Ekman transport driven by winds with 
own-front component ( Thomas, 2005 ) — the situation that 
as revealed within the Northern Wall of the Gulf Stream 

 Thomas et al., 2013 )). 
The SI growth rate ω i and horizontal lengthscale L can 

e estimated for constant shear and stratification (see Eq. 
1.4), (2.28), and (2.29) of Stone (1966) ) as 

 i = f 

√ 

1 − Ri √ 

Ri 
, L < 2 

U 

f 

√ 

1 − Ri (7) 

here U is the velocity of the basic geostrophic flow. In ac- 
ordance to Eq. (7) , for typical ocean parameters, U = 0.1 
/s, f = 1 •10 -4 s -1 , and SI favoring condition, Ri = 0.25—
.95, the SI time ( 1 / ω i ) and length ( L ) scales are in the range
f (0.58—4.35)/ f or 1.6—12 hours and below 0.45—1.7 km, 
espectively. 
Favorable conditions for SI are also expected in the bot- 

om boundary layer over sloping seabed where a cross-flow 

dvection of dense water over light water by Ekman trans- 
ort driven by bottom friction can reduce vertical stratifi- 
ation and increase baroclinicity (e.g. Garrett et al., 1993 ; 
mlauf and Arneborg, 2009 ; Zhurbas et al., 2012 ). 
The possibility to meet the SI condition Eq. (4) in well 

tratified interior layers of the sea that are not directly ex- 
osed to the atmospheric forcing and bottom friction seems 
uestionable and should be additionally tested. However, 
ne has to keep in mind that this instability condition is for-
ulated in terms of the Ertel potential vorticity of inviscid 
diabatic fluid and does not account for effects of verti- 
al eddy viscosity and diffusion. If vertical eddy viscosity 
nd diffusion is taken into account (see Eq. (3.3.a) and an 
nnumbered equation next to (3.5) in McIntyre (1970) and 
ppendix 1 for details), the SI condition Eq. (6) will change 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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i ( 1 + Ro ) < 

( 1 + Pr ) 2 

4 Pr 
, Ro > −1 , b z > 0 (8) 

here P r is the Prandtl number defined as the ratio 
f apparent vertical viscosity to diffusion of buoyancy. 
or this reason, diffusive destabilization of baroclinic 
eostrophic flow relative to 2D (symmetric) disturbances 
t 1 ≤ Ri < (1 + Pr ) 2 / (4 Pr ) is referred as the McIntyre in- 
tability ( Ruddick, 1992 ). In stratified ocean the P r value 
an be much larger than 1 because e.g. the low (near- 
nertial) frequency internal waves ( Lappe and Umlauf, 2016 ; 
homas et al., 2016 ) can effectively contribute to the verti- 
al transport of momentum without contributing to the ver- 
ical transport of mass/buoyancy. Comparing growth rates 
f symmetric disturbances in viscous non-adiabatic and in- 
iscid adiabatic cases, the corresponding inviscid adiabatic 
odes usually have the numerically highest growth rates 

 McIntyre, 1970 ). 
Apart from the diffusive destabilization, the baroclinic 

eostrophic flow in the ocean is subject to double-diffusive 
estabilization relative to 2D (symmetric) disturbances 
uzmina and Rodionov, 1992 ; Kuzmina and Zhurbas, 2000 ; 
ay and Kelley, 1997 ) caused by the differences in vertical 
pparent diffusivities for scalar quantities that determine 
he sea water density/buoyancy — temperature and salin- 
ty, in accordance with parameterization by Stern (1967) . 
herefore, there are at least three types of symmetric in- 
tability of baroclinic geostrophic flows: classic or invis- 
id adiabatic SI (SI), diffusive SI (DSI or McIntyre instabil- 
ty), and double-diffusive SI (DDSI). The DSI can exist at a 
ider range of Ri than SI (cf. Eq. (6) and (8) while DDSI 
s possible at any large value of Ri ( Kuzmina and Zhur- 
as, 2000 ). The maximum growing SI disturbance is aligned 
o the isopycnal slope and gains the kinetic energy (KE) 
rom the mean sheared flow, while the submesoscale and 
esoscale currents/eddies gain KE primarily through the re- 

ease of available potential energy stored in baroclinic fluid 
 Thomas et al. 2013 , 2016 ). In contrast to SI, the maxi-
um growing DSI and DDSI disturbances at P r > 1 have a 
maller slope than the isopycnal slope and gain KE through 
he release of available potential energy of baroclinic fluid 
 Kuzmina and Zhurbas, 2000 ; McIntyre 1970 ). The SI, DSI and 
DSI are characterized not only by different Ri ranges, but 
lso by different growth timescales: the timescales for DSI 
nd DDSI are larger than the timescale for SI ( Kuzmina and 
hurbas, 2000 ; McIntyre, 1970 ; see also Appendix 1 ). 
Apart from the symmetric instabilities, the elongated 

ubmesoscale features seen in the horizontal plane view 

f the vertical vorticity, temperature, material concentra- 
ion c , etc. can be generated by strain-induced frontoge- 
esis ( McWilliams, 2016 ; Munk et al., 2000 ). Frontogenesis 
s a classical dynamical process in meteorology ( Hoskins and 
retherton, 1972 ; Hoskins, 1982 ) and ocean ( Kuzmina, 1981 ; 
acvean and Woods, 1980 ) where a background horizontal 
eformation flow such as u d = αx, v d = −αy, w d = 0 , α > 

 with a uniform strain rate 

= 

(
∂ u d 

∂x 
− ∂ v d 

∂y 

)
/ 2 (9) 

rovides a rapid growth of y-aligned surface horizontal 
radients of buoyancy b y , velocity u y and passive tracer 
3 
oncentration, c y . The growth is exponential for passive 
racer ( c y ∼ exp ( αt ) ) and can be even super-exponential 
or the dynamically active b ( Hoskins and Bretherton, 1972 ; 
oskins, 1982 ). In the course of strain-induced frontogen- 
sis in inviscid adiabatic fluid, the frontal jet symmetry is 
iolated towards a strong cyclonic shear and a weak anti- 
yclonic shear: at time 2 . 5 α−1 the associated Rossby num- 
ers are R o + = 1 and R o − = −0 . 3 , respectively. Soon after-
ards, at 2 . 89 α−1 , the singularity is achieved with R o + =
 ∞ while the anticyclonic shear remains at R o − = −0 . 3

 Macvean and Woods, 1980 ; Munk 2001 ; Ou, 1984 ). Remark-
ble that the modelled filamentous submesoscale features 
n the surface ocean layer are characterized by very high 
yclonic shear at Ro > 1 ( McWilliams, 2016 ; Onken et al.,
020 ; Väli et al. 2017 ). In context of filamentous subme- 
oscale features, the primary background strain can be from 

esoscale currents and eddies as well as from submesoscale 
oherent vortices, while the seed buoyancy gradients are 
reated either by the quasigeostrophic chaotic advection 
f the mesoscale b field or by the mixed layer instabilities 
 McWilliams, 2016 ). 
In the general case the horizontal strain rate is defined 

s (e.g. Gula et al. (2014) ) 

 = 

√ (
u x − v y 

)2 + 

(
v x + u y 

)2 (10) 

he principal strain axis, given by the angle θp such that 

an 
(
2 θp 

) = 

v x + u y 

u x − v y 
(11) 

orresponds to the direction of the maximum stretching, 
hile its perpendicular direction corresponds to the maxi- 
um contraction. The straining will induce frontogenesis if 
he principal strain axis is aligned with the axis of the front.
here is a link between the strain-induced frontogenesis and 
I, namely, the enhancement of lateral buoyancy gradients 
ue to frontogenesis in conjunction with atmospheric forced 
urface buoyancy loss can produce a negative Ertel poten- 
ial vorticity q and thereby trigger SI ( Jing et al., 2021 ). 
There is another possibility of the striped texture for- 

ation, which can be considered as a null hypothesis. This 
efers to stirring of large-scale inhomogeneities by the eddy 
eld (e.g. Villermaux (2019) ). Smith and Ferrari (2009) have 
hown that temperature and salinity filaments with slopes 
uch steeper than the isopycnal slope can be generated 
hrough lateral stirring of large-scale thermohanine gradi- 
nts on isopycnal surfaces (thermoclinicity) by a vigorous 
eostrophic eddy field developed through barocinic insta- 
ility in the framework of a quasi-geostrophic model. Ef- 
ect of stirring is demonstrated in Appendix 2 where the 
volution of a constant gradient of the tracer concentra- 
ion in a time-dependent, non-divergent 2D velocity field, 
onsisting of two gyres that conversely expand and contract 
eriodically in the x-direction, is considered. It is shown 
hat for the advection time much longer than the period 
f eddy rotation and expansion-contraction, the constant 
radient tracer concentration transforms into a striped tex- 
ure, while the velocity and vorticity fields remain free of 
ny strip-like irregularities. 
Baltic Sea ( Figure 1 ) is known for summer cyanobac- 

eria blooming (e.g. Finni et al. (2001) ) which provides 
utstanding ability to visualize filamentous submesoscale 
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Figure 1 Bathymetric map of the Baltic Sea. Left panel: The high resolution model domain (filled colors) with the open boundary 
locations (bold blue lines). The coarse resolution model domain (blank contours + filled colors) has an open boundary close to 
Gothenburg (bold black line). Right panel: Close-up of the northeastern Baltic Proper (the study area). The river mouth locations in 
the coarse model setup and in both setups are marked with dots and crosses, respectively. 
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tructures and coherent vortices in remote sensing optical 
mages of the sea surface. Such images were even used in 
eview articles to demonstrate submesoscale phenomena 
e.g. McWilliams (2016) ). Several attempts were done to 
eproduce submesoscale features seen on remote sensing 
mages of the Baltic Sea using very high-resolution circu- 
ation models ( Laanemets et al., 2011 ; Onken et al., 2020 ; 
ankevich et al., 2016 ; Zhurbas et al., 2008 ; 2019a , b ).
tatistics of submesoscale coherent vortices simulated 
n the surface layer of the Baltic Sea was accessed in 
ortmeyer-Kley et al. (2019) . Rotation of floating partic- 
late matter in submesoscale vortices and its aggregation 
nto filamentous features was studied by means of numer- 
cal modelling of the Baltic Sea circulation ( Giudici et al., 
021 ; Kalda et al., 2014 ; Väli et al., 2018 ; Zhurbas et al.,
019a , b ). Diagnosis of mixed layer instabilities as applied 
o the surface layer of the Baltic Sea was performed by 
nken et al. (2020) and Chrysagi et al. (2021) based on sub- 
esoscale simulations. In summer, the SI condition ( Eq. (4) ) 
as found to be satisfied in 1.8—4.8% of the grid cells in the 
urface layer of a 100 km × 100 km model domain to the 
outh of the Bornholm Island ( Onken et al., 2020 ). Negative 
alues of the Ertel potential vorticity consistent with SI 
ere found in the down-wind flank of a frontal filament 
merged during a storm event in the Eastern Gotland 
asin ( Chrysagi et al., 2021 ). Seasonality of submesoscale 
oherent vortices in different layers of the Baltic Sea 
as addressed in Väli and Zhurbas (2021) based on very 
igh-resolution modelling. Kuzmina et al. (2005) showed 
hat DDSI was probably responsible for generation of ther- 
ohaline intrusions observed in the permanent halocline of 
he Eastern Gotland Basin after the 1993 Major Inflow. 
T

4 
Almost all of the above sited studies of submesoscale 
rocesses were focused on the surface mixed layer. Mean- 
hile, submesoscale processes are not limited to the 
urface mixed layer, where they are probably most in- 
ensive, but can also be active in the interior sea layers 
 McWilliams, 2016 ; Smith and Ferrari, 2009 ; Yu et al., 2019 ).
he objective of this work is to simulate submesoscale flows 
ypical for summer season in the northeastern Baltic Proper 
ased on a very high-resolution circulation model, compare 
he submesoscale filaments of the surface layer with those 
n the interior layers, and provide diagnosis of formation 
echanisms based on the above listed criteria. 

. Material and methods 

.1. Model description 

he General Estuarine Transport Model (GETM) 
 Burchard and Bolding, 2002 ) was applied to simulate the 
eso- and submesoscale variability of temperature, salinity, 
urrents, and overall dynamics in the northeastern Baltic 
roper. GETM is a primitive equation, 3-dimensional, free 
urface, hydrostatic model with the embedded vertically 
daptive coordinate scheme ( Hofmeister et al., 2010 ) which 
educes the artificial numerical mixing in the simulations 
 Gräwe et al., 2015 ). The vertical mixing is parametrized 
y two equation k- ε turbulence model coupled with an 
lgebraic second-moment closure ( Burchard and Bold- 
ng, 2001 ; Canuto et al., 2001 ). The implementation of 
he turbulence model is performed via General Ocean 
urbulence Model (GOTM) ( Umlauf and Burchard, 2005 ). 
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Figure 2 Colour snapshot (a) and infrared SST map (b) of an 
area west of the Moonsund from Operational Land Imager (OLI) 
and Thermal Infrared Sensor (TIRS) of the Landsat 8 satellite on 
2018/07/18 19:00 UTC versus modelled SST (GETM, 0.125 NM 

grid) on 2018/07/18 07:07 UTC (c). 
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5 
or the horizontal and vertical transport of momentum 

nd tracers, a second-order total variation diminishing 
TVD)-scheme with Superbee limiter with reduced spurious 
ixing ( Klingbeil et al., 2014 and 2018 ) is applied. 
The coarse resolution model covers the entire Baltic Sea 

ith an open boundary in the Kattegat and has the hor- 
zontal resolution of 0.5 nautical miles (926 m) over the 
hole model domain. The coarse resolution model run is 
tarted from 1 April 2010 with initial thermohaline condi- 
ions taken from the Baltic Sea reanalysis for the 1989—2015 
y the Copernicus Marine service. More detailed informa- 
ion about the model setups is available in Zhurbas et al. 
2018 and 2019a ) and for the coarse resolution model in 
iblik et al. (2020) . 
The horizontal grid of the high-resolution nested model 

ith uniform step of 0.125 nautical miles (approximately 
32 m) all over the computational domain, which covers 
he central Baltic Sea along with the Gulf of Finland and 
ulf of Riga ( Figure 1 ), is applied while 60 adaptive lay-
rs in the vertical direction are used, and the cell thick- 
ess in the surface layer within the study area does not 
xceed 1.8 m. The digital topography of the Baltic Sea 
ith the resolution of 500 m (approximately 0.25 nautical 
iles) is obtained from the Baltic Sea Bathymetry Database 

 http://data.bshc.pro/ ) and interpolated bi-linearly to 232 
 resolution. 
Nested model simulation run is performed from 1 April 

o 20 September 2018. The model domain has the west- 
rn open boundary in the Arkona Basin and the northern 
pen boundary at the entrance to the Bothnian Sea (see 
igure 1 for details). For the open boundary conditions 
he one-way nesting approach is used and the coarse res- 
lution model results along the open boundaries are uti- 
ized. Sea-level fluctuations with 1-hourly resolution and 
emperature, salinity and current velocity profiles with 3- 
ourly resolution are interpolated using the nearest neigh- 
our method in space to the higher resolution grid. In ad- 
ition, the profiles are vertically interpolated to 2 m reso- 
ution and extended to the bottom of the high resolution 
odel. Flather (1994) radiation condition is used for the 
btained sea-level fluctuation data and relaxation towards 
btained profiles with sponge layer factors according to the 
ethod of Martinsen and Engedahl (1987) during simulations 
t the boundary. 
The atmospheric forcing (the wind stress and surface 

eat flux components) is calculated with bulk formulae from 

he wind components, solar radiation, air temperature, to- 
al cloudiness and relative humidity data generated by the 
perational model HIRLAM (High Resolution Limited Area 
odel) maintained by the Estonian Weather Service with the 
patial resolution of 11 km and temporal resolution of 1 hour 
 Männik and Merilain, 2007 ). The wind velocity components 
t the 10 m level along with other HIRLAM meteorological 
arameters are bi-linearly interpolated to the model grid. 
The freshwater input from 54 largest Baltic Sea rivers 

ogether with their inter-annual variability is taken into ac- 
ount in the coarse resolution model. The original dataset 
onsists of daily climatological values of discharge for each 
iver, but inter-annual variability is added by adjusting 
he freshwater input to different basins of the sea to 
atch the values reported annually by HELCOM ( Johansson, 
018 ). 

http://data.bshc.pro/
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Figure 3 Left panels: gradient Rossby number Ro = ς/ f simulated on 2018/7/18 07:07 UTC at 2 m (top) and 22 m (bottom) levels. 
A black line on the left panels is the location of a transect to be analyzed in Figure 5 and 12. Right panels are the same but in the 
shaded relief form to highlight the striped texture. 
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The initial temperature and salinity fields are obtained 
rom the coarse resolution model for 1 April 2018 and in- 
erpolated using the nearest neighbour method to the high- 
esolution model grid. In addition, as the adaptive vertical 
oordinates are used in both setups, the T/S profiles from 

oarse resolution are linearly interpolated to fixed 10 m 

ertical resolution before interpolation to the high resolu- 
ion and extended to the maximum depth of high-resolution 
odel. The model runs are started from motionless state 
nd zero sea surface elevation. The spin-up time of the 
altic Sea model under the atmospheric forcing is expected 
o be within 10 days ( Krauss and Brügge, 1991 ; Lips et al.,
016 ), while the model output for comparison with the re- 
6 
pective satellite imagery was obtained after 108 days of 
imulation. 

.2. Model validation 

he coarse-resolution model (926 m grid), whose output 
as used as the initial and open boundary conditions in the 
ested, high-resolution model (232 m grid), has been thor- 
ughly tested by means of comparison of the simulated and 
bserved current velocity variance and timeseries of sea- 
evel fluctuations, temperature and salinity in the surface, 
ntermediate and bottom layers for a number of monitor- 
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ng stations of the Baltic Sea (see Zhurbas et al. (2018) for 
etails). 
The ability of the nested, high-resolution model to re- 

roduce the observed submesoscale structures is demon- 
trated in Figure 2 where the optical and infrared sea sur- 
ace temperature (SST) snapshots of an area west of the 
aaremaa and Hiiumaa islands (Moonsund), Estonia, from 

andsat-8 mission is presented versus the modelled SST for 
018/07/18. The snapshots were taken during the period 
f summer blooming of cyanobacteria, when the subme- 
ocale motions have assembled the phytoplankton mate- 
ial into filaments winded up into spirals thereby visualiz- 
ng coherent submesoscale vortices. Note that the cyclonic 
ortices/spirals are visualized better than the anticyclonic 
nes which can be explained by larger rotation frequency 
nd more pronounced differential rotation ( Zhurbas et al., 
019b ). Similar pattern of submesoscale filaments and ed- 
ies is seen in the simulated SST map; the difference is that 
he simulated pattern is more densely populated with sub- 
esoscale features in comparison to the remote sensing op- 
ical image which can be probably explained by the lack 
f visualizing tracer (phytoplankton) in some parts of the 
tudy area. The remote sensing SST is in good agreement 
ith the modelled SST, displaying almost identical areas of 
ronounced coastal upwelling and many submesoscale ed- 
ies. Of course, one cannot expect that the model will re- 
roduce the mutual arrangement of vortices in remote sens- 
ng images, since it is impossible to simulate the individual 
ealization of a random process of the formation of subme- 
oscale vortices. 

. Results 

he simulated submesoscale filaments — stripes occurred to 
e found in different tracer fields not only in the surface 
ayer but also in the interior layers. To illustrate this, we 
alculated patterns of the gradient Rossby number Ro = ζ/ f
 Figure 3 ) and the horizontal temperature gradient modulus 
 
H T | = 

√ 

T 2 x + T 2 y ( Figure 4 ) in the surface layer ( z = 2 m)

nd in an interior layer at depth z = 22 m which is located
n or just below the seasonal thermocline (cf. Figure 5 d). 
ote that all of the gradient variables shown in Figure 3 and 
ubsequent figures were calculated through the finite dif- 
erences with a step of 2 m vertically and 232 m horizon- 
ally. Both the Ro and | 
H T | maps display a variety of sub- 
esoscale stripes of the order 10 km in length and 1 km in 
idth. The most prominent stripes are found on the periph- 
ry of submesoscale coherent vortices (cf. Figures 3 , 4 and 
 ), and they display a tendency to be vertically inclined to- 
ards the center of the vortex with increasing depth (see 
igure 5 ). 
Vertical/side view of the submesoscale stripes is demon- 

trated in Figure 5 where the Rossby number fluctuations 
o ′ = Ro − 〈 Ro〉 and the horizontal gradient modulus of tem- 
erature and density, | 
H T | and | 
H ρ| , respectively, are 
lotted versus distance and depth; 〈 Ro〉 is the running mean 
alue of Ro over 11 bins horizontally-neighbouring along 
he section (i.e. the smoothing window is 11 × 231 . 5 m ≈
 . 5 km ). The stripes seen in the interior layers have vertical 
xtension of 10—50 m and do not penetrate into the surface 
7 
ixed layer whose thickness is only 5—8 m (cf. Figure 5 b, 
 and d). The surface mixed layer has its own system of 
tripes, the vertical extension of which is probably deter- 
ined by the thickness of the mixed layer but cannot be ac- 
urately estimated from Figure 5 . To estimate the vertical 
xtension of stripes in the mixed layer accurately, we calcu- 
ated the correlation coefficient between the Rossby num- 
er fluctuations Ro ′ in the uppermost z-level (0.5 m depth) 
nd that of 1.5, 2.5, …, 10.5 m depth. Since the correla-
ion dropped to 0.21 for the 0.5 m and 6.5 m series and
ecame negative (-0.013) for the 0.5 m and 7.5 m series, 
he vertical extension of stripes in the surface mixed layer 
as estimated as 6—7 m. 
To diagnose the possibility of formation of submesoscale 

triped texture in the Baltic Sea by stirring of large-scale 
nhomogeneities by the eddy field, we carried out a numeri- 
al experiment with floating Lagrangian particles, similar to 
hat described in Appendix 2 . Instead of the eddy field spec- 
fied by the analytical forms (A26)—(A27), we took the time- 
ependent ( u, v ) —components of currents in the surface 
ayer of the Baltic Sea, generated by the high-resolution 
odel. The initial concentration of floating particles was 
aken either homogeneous with C 0 = 900 particles per a 232 
 × 232 m model bin, randomly seeded within the bin, 
r obeying a constant meridional gradient with 1000 par- 
icles per bin at the northern boundary of the study region 
nd 800 particles per bin at the southern boundary. Keep- 
ng in mind that the typical period of rotation of coher- 
nt submesoscale vortices in the Baltic Sea is T CSV = 4 π/ f ≈
8 hours, we calculated the normalized concentration C/ C 0 

or 2018/7/18 07:07 UTC formed from the homogeneous 
nd constant meridional gradient states during the preced- 
ng time span of t = 8 hours (which corresponds to the 
ase of small advection time t/ T CSV = 0 . 29 � 1 ) and t = 3
ays (which corresponds to the case of large advection time 
/ T CSV = 2 . 6  1) ( Figure 6 ). 
In contrast to the case of non-divergent, time- 

ependent, 2D eddy field where the formation of striped 
exture by stirring of the large scale inhomogeneities took 
lace only at t/ T CSV  1 (see Appendix 2 ), in the case 
f the modelled ( u, v ) —components of surface currents of 
he Baltic Sea the striped texture in the floating parti- 
les concentration is already formed at t/ T CSV � 1 starting 
rom both the homogenous and constant meridional gradi- 
nt state (cf. Figures 6 and 14 ). Moreover, the striped tex- 
ure formed from initially homogeneous and constant gra- 
ient concentration is almost identical which means that 
he stripes are generated by the horizontal velocity diver- 
ence/convergence rather than by stirring of the large-scale 
orizontal gradients by the eddy field. 
The striped texture is also seen in the field of horizon- 

al velocity divergence, but it has no simple linear rela- 
ionship with the striped texture of the floating tracer (cf. 
igures 6 and 7 ). The dissimilarity of the texture in the fields
f concentration of the floating tracer and horizontal diver- 
ence is associated with a complex integral relationship be- 
ween these fields ( Väli et al., 2018 ). 

 ( x , t ) = C ( t − τ | x , t ) exp 
[

t−τ

∫ 

t 
div 

(
u (t ′ | x , t) 

)
dt ′ 

]
(12) 

here u = ( u, v ) and A (t ′| x , t ) denotes the value of a prop-
rty A at time moment t′ for a Lagrangian particle/parcel 
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Figure 4 Horizontal temperature gradient modulus | ∇ H T | simulated on 2018/7/18 07:07 UTC at 2 m (left) and 22 m (right) levels. 
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hat had the position x = ( x, y ) at time moment t. The 
uadrature solution (12) shows that concentration of float- 
ng stuff at a material point ( x , t ) is equal to the concen- 
ration at the same material point in the preceding time 
oment t − τ multiplied by the exponent of the backward 
ime integral of the Lagrangian velocity divergence for the 
ime interval [ t, t − τ ] . 
To diagnose the classic symmetric instability using the re- 

ults of simulation, we tested the fulfillment of the criterion 
q. (4) and the condition q < 0 in the same layers as shown 
n Figures 2—4 . A logical maps presented in Figure 8 show 

hat the criterion Eq. (4) is satisfied in numerous elongated 
pots occupying approx. 20.1% of the study area in the sur- 
ace layer, while at z = 22 m the instability percentage falls 
o 0.6%. Moreover, even the rare, would-be instability spots 
t z = 22 m level are not uniformly distributed within the 
tudy area but mostly located in the vicinity of the same 
ontour of the sea depth, 22 m, i.e. they are actually in the 
ottom boundary layer. As to the gravitational ( Eq. (2) ) and 
nertial ( Eq. (3) ) instability, it is possible only in areas less 
han 1% of the total study area both at z = 2 m and z = 22
 (i.e. the likelihood to meet gravitational and inertial in- 
tabilities is insignificant both in the surface and interior 
ayers). 

To diagnose the McIntyre instability, we calculated pa- 
ameter Ri ( 1 + Ro ) at z = 2 and 22 m levels ( Figure 9 ).
t was conventionally assumed that the McIntyre instabil- 
ty is possible at 1 ≤ Ri (1 + Ro ) < 10 when in accordance to
q. (8) the Prandtl number is not too large, 1 < P r < 40 ,
r not too small, 1 / 40 < P r < 1 . The parameter Ri ( 1 + Ro )
as in the 1 ≤ Ri (1 + Ro ) < 10 range (the would-be McIntyre 
nstability) in 39.4% and 14.0% of the study area at z = 2 
nd 22 m levels, respectively, and in the 0 < Ri ( 1 + Ro ) < 1
ange (classic symmetric instability) in 12.6% and 0.7%, re- 
pectively. Note that the criteria Eq. (4) and Eq. (6) provide 
early the same small value for the symmetric instability 
ercentage in the interior layer (0.6% vs 0.7%) while in the 
urface layer, Eq. (4) gives considerably larger value of the 
8 
ymmetric instability percentage relative to Eq. (6) (20.1% 

s 12.6%). The discrepancy is likely caused by the vertical 
hear in the wind-driven Ekman currents which, being ig- 
ored in Eq. (6) , can enlarge the absolute value of q bc in the
urface layer. 
To diagnose the possibility of horizontally elongated 

ubmesoscale features to be generated by strain-induced 
rontogenesis, a frontogenetic strain rate was defined as 
 cos (2 θ ) , where θ = θρ − θp is the angle between the den- 
ity front axis θρ and the principal strain axis θp . At | θ | < π/ 4
e have S cos ( 2 θ ) > 0 which corresponds to frontogenetic 
ituation, and at | θ | > π/ 4 we have S cos ( 2 θ ) < 0 which cor-
esponds to frontolytic situation ( Hoskins, 1982 , Gula et al., 
014 ). The horizontal strain rate S defined by Eq. (11) and 
he angle θ was calculated from the model output. Maps 
f the normalized frontogenetic strain rate S cos ( 2 θ ) / f
 Figure 10 ) show that positive values of this parameter of 
he order of 1 frequently encounter both in the surface and 
nterior layers. The cumulative distribution function P F of 
he S cos ( 2 θ ) / f parameter ( Figure 11 ) show that the fron-
ogenetic case is more probable than the frontolytic case 
 1 − P F (0) = 0.62 and 0.58), and the 90% quantile of P F (i.e.
he value of S cos ( 2 θ ) / f for which P F ( S cos ( 2 θ ) / f ) = 0 . 9 ) is
.41 and 0.33 at z = 2 m and 22 m, respectively. 
Distribution of the same parameters as in Figures 8—

0 versus distance and depth ( Figure 12 ) confirms that the 
deal fluid SI criterion ( Eq. (4) ) is satisfied in numerous spots
n the surface and bottom layers and not satisfied in the in- 
erior. In the surface layer, the spots do not exceed 5 m in
epth. In contrast, there is some possibility for the McIntyre 
nstability to exist both in the boundary and interior lay- 
rs especially within the anticyclonic eddy (see Figure 12 c). 
imilar to Figures 10—11 , Figure 12 d shows the presence of 
elatively high values of S cos ( 2 θ ) / f throughout the water 
olumn. 
Vertical section of the SI logical parameter, q, Ri ( 1 + Ro ) , 

nd S cos ( 2 θ ) / f ( Figure 12 ) confirms that conditions 
avourable for SI are satisfied only in a localized spots in the 
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Figure 5 Vertical section through an anticyclonic and two cyclonic eddies (simulation, 2018/7/18 07:07 UTC). The position of the 
section is shown in Figure 3 . (a) Potential density anomaly ρ (contours) and Rossby number Ro (colours), (b) Rossby number fluctu- 
ations Ro ′ , (c) horizontal temperature gradient modulus | ∇ H T | , (d) horizontal density gradient modulus | ∇ H ρ| , and (e) temperature 
T versus distance and depth. 

9 
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Figure 6 Normalized concentration of floating particles on 2018/7/18 07:07 UTC formed by the modelled surface layer currents 
during the preceding time span of t = 8 hours (left panels) and t = 3 days (right panels) from the initially homogeneous (top panels) 
and constant meridional gradient (bottom panels) state. 
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urface and bottom layers while the high positive values of 
he horizontal frontogenetic strain rate S cos ( 2 θ ) of the or- 
er of f are frequently encountered everywhere throughout 
he water column. Note that there are some spots of nega- 
ive q and Ri ( 1 + Ro ) values in the core of the anticyclonic 
ddy and in the bottom layer which are not confirmed by 
he SI logical parameter and therefore relate to the inertial 
nstability condition Ro < −1 . 

. Discussion and conclusions 

he very high-resolution modelling of the northeastern 
altic Proper shows that preferentially along-flow elongated 
10 
ubmesoscale inhomogeneities or stripes of the order of 10—
0 km in length and 1 km in width, are quite typical for sum-
er season both in the surface layer and the interior layers. 
he difference lies in the vertical scale of the stripes: it 
oes not exceed 6—7 m in the surface layer which is com- 
arable with the upper mixed layer depth (see Figure 5 ) to 
0—50 m in the interior layers. In the vertical plane, the 
tripes display a tendency to be inclined towards the center 
f submesoscale coherent vortices with increasing depth. 
he difference in vertical size of the stripes simulated in 
he surface and interior layers hints at different generation 
echanisms, the diagnosis of which has become the main 
ocus of this study. 
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Figure 7 Normalized horizontal divergence of the surface layer velocity simulated for 2018/7/18 07:07 UTC. 

w
m
e
p
r
d
fi
r
r

a
s
t
l
m
r
s
t
o

m
s
c
a
o
r
f
t
i
T
b
a

Table 1 Normalized growh rate ω i / f of the maximum 

growing mode of the classic symmetric instability ver- 
sus the Richardson and Rossby numbers, calculated from 

Eq. (A10) . 

Ro \\ Ri 0.25 0.5 0.95 

-0.5 1.87 1.22 0.74 
0 1.73 1 0.23 
0.5 1.58 0.71 NONE 
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Stirring of large-scale inhomogeities by the eddy field 
as chosen a null hypothesis for the striped texture for- 
ation. To test this, we performed a number of numerical 
xperiments simulating horizontal advection of Lagrangian 
articles by the surface currents generated by the high- 
esolution model of the Baltic Sea and by the 2D non- 
ivergent, time-dependent, two-gyre velocity field speci- 
ed by analytical forms (A26)—(A27) for comparison. As a 
esult, the null hypothesis was declined for the next two 
easons. 
First, the stirring of large-scale horizontal gradients of 

 passive tracer by the eddy field was found to form the 
triped texture for the advection time much larger than 
he period of eddy rotation, t/ T CSV  1 , while, in particu- 
ar, the aggregation of floating particles in stripes by the 
odelled surface currents of the Baltic Sea took place al- 
eady at t/ T CSV � 1 even when the particles were uniformly 
eeded throughout the study region. The latter proves that 
he non-uniform horizontal divergence rather than stirring 
f large-scale horizontal gradients matters. 
Second (and more principal), stirring of large scale inho- 

ogeneities by eddies in its narrow sense implies the pos- 
ibility of striped texture formation in the passive tracer 
oncentration (e.g. Villermaux, 2019 ) or in temperature 
nd salinity provided that there are thermohaline gradients 
n isopycnal surfaces, i.e. thermoclinicity ( Smith and Fer- 
ari, 2009 ). However, the high-resolution ocean modelling 
orecasts the striped texture also in the dynamically ac- 
ive tracers such as the vertical vorticity, modulus of hor- 
zontal gradient of buoyancy, horizontal divergence, etc. 
herefore, one has to seek for other mechanisms responsi- 
le for strip-like submesoscale disturbances of the velocity 
nd buoyancy fields. 
11 
The classic SI criterion ( Eq. (4) ) is shown to be satisfied
n numerous elongated spots occupying approximately 20% 

f the study area in the surface layer and the vertical ex- 
ension of SI layer does not exceed 5 m and has the typical
alue of 4 m which is a part of the mixed layer of 6—8 m
n depth (cf. Figures 5 and 12 ). The thermal wind veloc- 
ty U in Eq. (A25) can be estimated from the model out- 
ut as the product of the root mean square of the verti-
al velocity gradient at z = 2 m (which is 0.027 s -1 for the
ime moment 2018/7/18 07:07 UTC) and the height of SI 
ayer: U = 0 . 027 × 4 ≈ 0 . 1 m s -1 . If one takes U = 0.1 m
 

-1 , f = 1.24 10 -4 s -1 (at 58.2 °N, the mid-latitude of the
tudy area), Ri = 0.25—0.5, and Ro = -0.5—0.5, according to 
qs. (A10) and ( A25 ) the SI growth timescale T = 1 / ω i will
e estimated as T = 1.2—3.2 hours, while the upper limit 
or the lengthscale of growing disturbances varies within 
 = 540—3020 m (see Tables 1 and 2 ). These estimates of
 and L seem quite reasonable, because the former is much 
maller than the formation time of the submesoscale coher- 
nt vortices ( McWilliams, 2016 ), and the latter satisfacto- 
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Figure 8 Logical maps (left panels) indicating where the condition for symmetric instability ( Eq. (4) ) is satisfied (black spots) 
and Ertel potential vorticity q (right panels) in the surface layer (top panels) and the interior (bottom panels) layers (simulation, 
2018/7/18 07:07 UTC). 
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ily corresponds to the width of the simulated filaments: in 
ccordance to Figure 5 b, the horizontal wavelength of the 
tripes in the surface layer varies between 2 km and 3 km 

hich is close to the upper limit of the horizontal length- 
cale of the unstable SI modes. Given the uncertainties both 
n theory and in the simulation results, a more detailed com- 
arison of the theory with the simulation results does not 
eem appropriate. Therefore, symmetric instability in invis- 
id adiabatic fluid may be considered as a probable gener- 
tion mechanism for the submesoscale stripes in the sur- 
ace layer of the Baltic Sea. To the contrast, the SI criterion 
12 
q. (4) is not satisfied in the interior layer, and alternative 
eneration mechanisms of submesoscale stripes has to be 
uggested. 
One of the competitive generation mechanisms of the 

ubmesoscale stripes in the interior layers of the Baltic Sea 
ould be the McIntyre instability which is a form of symmet- 
ic instability in a viscous, non-adiabatic fluid accounting for 
he difference between vertical eddy viscosity and vertical 
ddy diffusion of buoyancy ( McIntyre, 1970 ; Ruddick, 1992 ). 
ndeed, if we conditionally suppose that the Prandtl num- 
er P r is as large as P r = 40 or as small as P r = 1 / 40 (so
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Figure 9 Parameter Ri ( 1 + Ro ) in the surface and the interior layers (simulation, 2018/7/18 07:07 UTC) indicating the possi- 
bility of different instabilities: Ri ( 1 + Ro ) < 0 — inertial instability, 0 < Ri ( 1 + Ro ) < 1 — symmetric instability, 1 ≤ Ri (1 + Ro ) < 

(1 + Pr ) 2 / 4 Pr = 10 — McIntyre instability. 

Figure 10 Normalized frontogenetic strain rate S cos ( 2 θ ) / f in the surface (left) and interior (right) layers (simulation, 2018/7/18 
07:07 UTC). 
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hat ( 1 + P r ) 2 / 4 P r ≈ 10 ), the McIntyre instability criterion 
 < Ri ( 1 + Ro ) < ( 1 + P r ) 2 / ( 4 P r ) will be satisfied in approx.
9% of the study area in the surface layer, while in the in- 
erior layers, the percentage falls to 14% (see Figures 9 and 
2 c). The latter percentage value, 14%, being considerably 
13 
maller than in the surface layer, is still large enough to 
onsider the McIntyre instability as a competitive genera- 
ion mechanism for submesoscale stripes in the interior lay- 
rs. As to the growth time of the McIntyre instability, it is 
onsiderably larger than respective estimates for the clas- 
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Figure 11 Cumulative distribution functions and probability density functions of the normalized frontogenetic strain rate 
S cos ( 2 θ ) / f in the surface layer (black curves) and the interior (red curves) calculated from the model output on 2018/7/18 07:07 
UTC. Dotted lines point at 90% quantile of the S cos ( 2 θ ) / f distributions. 

Table 2 Limitation for the horizontal length scale of dis- 
turbances L growing due to the classic symmetric insta- 
bility, calculated from Eq. (A25) at U = 0.1 m s -1 , f = 

1.24 •10 -4 s -1 , and different values of the Richardson and 
Rossby numbers. 

Ro \\ Ri 0.25 0.5 0.95 

-0.5 < 3020 m < 2800 m < 2340 m 

0 < 1400 m < 1140 m < 360 m 

0.5 < 860 m < 540 m NONE 
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Table 3 Normalized growth rate ω i / f of the maxi- 
mum growing mode of the McIntyre instability versus the 
Richardson, Rossby, and Prandtl numbers ( Ri , Ro, and 
P r, respectively), calculated as the maximum positive 
root of the polynomial (A15). The choice of P r values, 6, 
1/6, 10, 1/10, 40 and 1/40, is motivated by the desire 
to have approx. 2, 3, and 10 for the respective values of 
(1 + Pr ) 2 / 4 P r (see Eq. (8) and Figures 9 and 12 c). Note 
that the case of Ri = 1 , Ro = −0 . 5 does not correspond to 
the McIntyre instability because Ri ( 1 + Ro ) = 0 . 5 < 1 . 

Ro = 0 
P r \\ Ri 1.1 2 5 

6 (1/6) 0.096 (0.28) 0.00032 (0.0017) < 0 
10 (1/10) 0.12 (0.45) 0.018 (0.13) < 0 
40 (1/40) 0.15 (1.1) 0.055 (0.69) 0.0095 (0.23) 

Ro = 0 . 5 
P r \\ Ri 1.1 2.2 5 

6 (1/6) - 0.066 (0.20) < 0 
10 (1/10) - 0.084 (0.32) 0.0035 (0.029) 
40 (1/40) - 0.11 (0.77) 0.027 (0.40) 
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ic SI (cf. Tables 1 and 3 ). There is some doubt that the
cIntyre instability at P r > 1 (viscous destabilization) can 
e responsible for generation of submesoscale stripes simu- 
ated in the interior layer of the Baltic Sea for two reasons. 
irst, the typical value of the growth time 1 / ω i , achieved 
hen Ri ( 1 + Ro ) is in the middle of the instability range 
1, ( 1 + P r ) 2 / 4 P r > 1 ), is estimated at 3 days (see Table 3 )
hich is comparable with the formation time of the subme- 
oscale coherent vortices. Second, the slope of simulated 
tripes clearly exceeds the isopycnal slope (see Figure 5 ), 
hile the theory forecasts the opposite (see Eq. (A18) ). 
Despite the fact that now we have no physical reason to 

elieve that the Prandtl number in the ocean can be less 
han one, it still seems interesting to consider the McIn- 
yre instability under the condition P r < 1 (diffusive desta- 
ilization). In this case, in accordance to Eq. (A18) , the 
lope of growing disturbances is larger than the isopycnal 
lope which is consistent with the slopes of stripes simu- 
ated in the interior layers (see Figure 5 b and c). Moreover, 
he growth rates of the maximum growing disturbances cal- 
ulated from Eq. (A15) at P r < 1 are found to be much
arger than that of P r > 1 (see Table 3 ). For example, at
14 
o = 1 , Ri = 2 , P r = 14 we have ω i / f = 0 . 031 (the growth
ime is 1 / ω i ≈ 3 days) versus ω i / f = 0 . 24 (the growth time
s 1 / ω i ≈ 9 hours) at Ro = 1 , Ri = 2 , P r = 1 / 14 . 

The credibility of generation of submesoscale stripes 
y strain-induced frontogenesis, can be evaluated by con- 
idering the 90% quantile of the probability function of 
he normalized frontogenetic strain rate P F ( S cos ( 2 θ ) / f ) . 
he high-resolution modelling show that the condition 
 F ( S cos ( 2 θ ) / f ) = 0 . 9 is satisfied at [ S cos ( 2 θ ) / f ] 0 . 9 = 0.41
nd 0.33 at z = 2 m and 22 m, respectively. In this case,
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Figure 12 Vertical section through an anticyclonic and two cyclonic eddies (simulation, 2018/7/18 07:07 UTC). The position of the 
section is shown in Figures 2 and 3 . (a) Potential density anomaly σθ (contours) and SI logical parameter based on Eq. (4) criterion 
(black spots), (b) Ertel potential vorticity q calculated using Eq. (1) , (c) instability parameter Ri ( 1 + Ro ) , and (d) normalized 
frontogenetic rate S cos ( 2 θ ) / f versus distance and depth. 
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 characteristic growth time of submesoscale stripes due 
o frontogenesis can be estimated as 1 / ( 0 . 41 f ) = 5.5 hours 
nd 1 / ( 0 . 33 f ) = 6.8 hours in the surface and interior lay-
rs, respectively, which is 2—4 times longer than the above 
entioned SI growth times in the mixed layer. 
Summarizing the above consideration, we admit that 

hree of four processes considered (the classic symmetric 
nstability, the McIntyre instability, and the strain-induced 
rontogenesis) could contribute to generation of the subme- 
oscale striped texture in the surface layer of the Baltic Sea, 
hile in the interior layers, the classic symmetric instability 
s excluded. Taking into account the fact that out of sev- 
ral competing processes, the fastest survives, we conclude 
hat the classic symmetric instability and the strain-induced 
rontogenesis are the most probable mechanisms respon- 
15 
ible for the formation of submesoscale striped texture in 
he surface mixed layer of the Baltic Sea. In the interior 
ayers, the strain-induced frontogenesis and hypothetically 
he McIntyre instability can be essential, but it takes fur- 
her effort to draw a more definite conclusions. Stirring of 
arge-scale inhomogeneities by the eddy field could be re- 
ponsible for formation of striped texture in a passive tracer 
oncentration and in temperature and salinity in the pres- 
nce of thermoclinicity, but it does not imply formation of 
tripes in dynamically active tracers, such as vertical vor- 
icity, horizontal gradients of buoyancy, etc. The DDSI is ex- 
luded from a list of possible mechanisms of formation of 
ubmesoscale stripes because the study area in the period 
onsidered was almost free of thermoclinicity, and double 
iffusion was therefore unable to generate alternating hor- 
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zontal pressure gradients. Note that the presence of sub- 
esoscale striped structures in the surface layer is backed 
p by remote sensing images, while the simulated deeper- 
ayer filaments do not yet have such a strong observational 
upport. 
All the above-described processing and analysis of the 

odel output was performed for one point in the simula- 
ion time — 2018/07/18, and therefore the question arises 
s to how typical the obtained results are. The same pro- 
essing of the model output was carried out for two more 
oints in time — 2018/07/27 and 2018/08/03 for which we 
ave the remote sensing images similar to Figure 2 , a and 
 (not shown in the article). Since no significant differences 
ere found, the above results can be considered apparently 
ypical for the summer season in the Baltic Sea. 
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ppendix 1. Instability analysis 

et us perform a simple analysis of the instability of a 
eostrophic flow with a linear vertical velocity profile in the 
ramework of a 2D problem, that is, when the perturbations 
o not depend on the along-flow coordinate x (symmetric 
nstability). The basic flow equations are 

fU = −∂ ̄P 
∂y 

; V = 0 ; W = 0 , 
∂ ̄P 
∂z 

= −g ̄ρ

here P̄ and ρ̄ are the pressure and density divided by 
he reference density ρ0 ; the vertical shear of the basic 
ow is taken constant: ∂U 

∂z = 

g 
f 

∂ ̄ρ

∂y = const. We take into ac- 
ount also a constant barotropic shear of the basic flow: 

∂U 
∂y = const. 
16 
Equation s for disturbances with allowance for viscosity 
nd diffusion of buoyancy are 

∂u 

∂t 
− fv + v 

∂U 

∂y 
+ w 

∂U 

∂z 
= P r · K 

∂ 2 u 

∂ z 2 
(A1) 

∂v 
∂t 

+ fu = −∂p 

∂y 
+ P r · K 

∂ 2 v 
∂ z 2 

(A2) 

∂w 

∂t 
+ gρ = −∂p 

∂z 
(A3) 

∂v 
∂y 

+ 

∂w 

∂z 
= 0 (A4) 

∂ρ

∂t 
+ v 

∂ ̄ρ

∂y 
+ w 

∂ ̄ρ

∂z 
= K 

∂ 2 ρ

∂ z 2 
(A5) 

here u , v, and w are components of velocity disturbances, 
p and ρ are disturbances of pressure and density divided by 
0 , and K is the vertical diffusion of buoyancy. 
In the case of infinite depth layer, the solution of system 

q. (A1) —( A5 ) is sought in the form 

 = ψ 0 exp ( ωt + imz + ily ) (A6) 

here ψ is any disturbed variable from Eq. (A1) —( A5 ). Note 
hat with this form of solution, the tangent of the angle 
f inclination of the disturbances relative to the horizontal 
slope) is 

an ( γ ) = − l 
m 

et’s consider different cases of the Eq. (A1) —( A6 ) solutions. 

1. Inviscid adiabatic fluid in hydrostatic 

pproximation, infinite depth layer 

fter removing the last term in the right hand part of 
q. (A1) , ( A2 ), and ( A5 ) and substituting Eq. (A6) to
q. (A1) —( A5 ) the following equation for the growth rate
is obtained 

 

2 + f f ∗ + 2 tan 
(
γρ

)
N 

2 l 
m 

+ N 

2 l 
2 

m 

2 
= 0 (A7) 

here tan (γρ ) = 

g ρy 

N 2 
is the slope of isopycnals relative to the 

orizontal, f ∗ = f − ∂U 
∂y . For a small isopycnal slope, γρ � 1 , 

an ( γρ ) ≈ γρ, and Eq. (A7) re-writes as 

 

2 + f f ∗ + N 

2 (l/m + γρ

)2 − N 

2 γ 2 
ρ = 0 (A7a) 

t follows from Eq. (A7a) ́that instability (i.e., ω > 0 ) is pos-
ible only when γ 2 

ρ − f f ∗
N 2 

> 0 or 

i ( 1 + Ro ) < 1 (A8) 

here Ri = 

f 2 

N 2 γ 2 
ρ

is the geostrophic Richardson number 

nd Ro = − ∂ U/∂ y 
f is the gradient Rossby number. Note that 

q. (A8) fits the classic SI instability condition Eq. (6) . Based 
n the results of Ooyama (1966) Eq. (A8) was probably first 
btained by Hoskins (1974) . 
According to Eq. (A7a) ́, the slope of the maximum grow- 

ng disturbances, γi , is 

i = −
(

l 
m 

)
= γρ (A9) 
i 
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.e., the maximum growing disturbance does not cross the 
sopycnal surfaces (see also Kuznima and Zhurbas, 2000 ; 
cIntyre, 1970 ; Taylor and Ferrari, 2009 ). The growth rate 
f the maximum growing disturbances, ω i , is 

 i = f 
(
1 − Ri ( 1 + Ro ) 

Ri 

)1 / 2 

(A10) 

ote that Eq. (A10) coincides the well-known formula by 
tone (1966) , provided that Ro = 0 (cf. Eq. (7) which was 
erived in Stone (1966) for the no barotropic shear case). 
q. (A10) was also derived in Haine and Marshall (1998) from 

nergy analysis of the thermal wind. 

2. Inviscid adiabatic fluid, non-hydrostatic case, 
nfinite depth layer 

n this case, the equation for the growth rate is 

 

2 
(
1 + 

l 2 

m 

2 

)
+ f f ∗ + 2 tan 

(
γρ

)
N 

2 l 
m 

+ N 

2 l 
2 

m 

2 
= 0 (A11) 

It can be easily shown by analogy with the previous anal- 
sis, that the instability condition and the slope of the max- 
mum growing mode remain the same as in the hydrostatic 
ase (see Eq. (A8) and ( A9 )). However, the growth rate for 
he maximum growing disturbances is expressed in this case 
y the formula: 

 i = 

( (
tan 

(
γρ

))2 N 

2 

1 + 

(
tan 

(
γρ

))2 − f f ∗

1 + 

(
tan 

(
γρ

))2 
) 1 / 2 

(A12) 

or small isopycnal slopes tan ( γρ ) � 1 Eq. (A12) reduces to 
q. (A10) , while for large isopycnal slopes tan ( γρ )  1 it 
educes to 

 i = N 

√ 

1 − Ri ( 1 + Ro ) (A13) 

hus, the maximum growing perturbations can grow prac- 
ically in a few minutes, but only when the slope of the 
sopycnal surfaces significantly exceeds the angle of π/ 4 . 

3. Viscous non-adiabatic fluid in hydrostatic 

pproximation, infinite depth layer 

n this case we take tan ( γρ ) ≈ γρ � 1 , and the growth rate 
quation is 

A · B 

N 

2 
+ 

l 
m 

γρ

(
1 + 

B 

A 

)
+ 

f f ∗

N 

2 

B 

A 

+ 

l 2 

m 

2 
= 0 (A14) 

here A = ω + P rK m 

2 , and B = ω + K m 

2 . If P r � = 1 ,
q. (A14) is reduced to a polynomial of the third degree: 

 

3 + C 2 ω 

2 + C 1 ω + C 0 = 0 (A15) 

t can be easily shown that the coefficients C 1 and C 2 in 
q. (A15) are nonnegative when Ri ( 1 + Ro ) ≥ 1 . Therefore, 
or Ri ( 1 + Ro ) ≥ 1 the polynomial Eq. (A15) has one and only 
ne positive real root and only when C 0 < 0 . To analyze the 
issipation-related instability, let’s consider the free term 

f Eq. (A15) , 

 0 = K m 

2 
(

P r 2 K 

2 m 

4 + γρ

l 
m 

( P r + 1 ) N 

2 + f f ∗ + P r N 

2 l 
2 

m 

2 

)
(A16) 
17 
hich can be re-written as 

 0 = K m 

2 N 

2 P r 
(

P r K 

2 m 

4 

N 

2 
+ 

f f ∗

P r N 

2 

+ 

(
γρ ( P r + 1 ) 

2 P r 
+ 

l 
m 

)2 

− γ 2 
ρ ( P r + 1 ) 2 

4 P r 2 

) 

(A16a) 

t follows from Eq. (A16a) ́that the free term C 0 can be neg- 
tive only if 

f f ∗

γ 2 
ρ N 

2 
= Ri ( 1 + Ro ) < 

( P r + 1 ) 2 

4 P r 
(A17) 

hich is a well-known condition for the McIntyre (1970) in- 
tability at P r � = 1 (cf. Eq. (A17) and Eq. (8) ). When the
onditions 1 ≤ Ri ( 1 + Ro ) < 

( Pr+1 ) 2 

4 Pr and P r � = 1 are satisfied
he slope of the maximum growing mode in accordance to 
A16a) ́ is 

i = −
(

l 
m 

)
i 
= γρ

P r + 1 
2 P r 

(A18) 

quation (A18) says that for the McIntyre instability the 
lope of the maximum growing mode exceeds the isopycnal 
lope when P r < 1 and becomes less than it when P r > 1 .
ote that at P r = 1 the instability criterion remains the 
ame as in the case of ideal fluid ( McIntyre, 1970 ). 

4. Inviscid adiabatic fluid in hydrostatic 

pproximation, finite depth layer 

n contrast to the slope and growth rate of the maximum 

rowing mode ( Eq. (A9) and ( A10 )), the characteristic length 
cale of instability cannot be found from the inviscid adi- 
batic consideration in the infinite depth layer. To esti- 
ate the characteristic length scale of instability, let’s con- 
ider, following Stone (1966) , a finite depth layer with the 
arotropic shear additionally included and seek the solution 
f system of equations (A1) —( A5 ) with hydrostatic approxi- 
ation in the form 

 = ψ 0 ( z ) exp ( ωt + ily ) (A19) 

ubstitution of Eq. (A19) into Eq. (A1) —( A5 ) reduces the lat-
er to a second-order differential equation relative to the 
ertical velocity w with constant coefficients, which should 
e solved under the boundary conditions 

 = 0 at z = 0 , H (A20) 

here H is the layer depth. Here, for the sake of brevity, we 
resent only the equation for the growth rate, which is the 
esult of solving the eigenvalue problem: 

γρ lN 

2 

ω 

2 + f f ∗

)2 

= 

l 2 N 

2 

ω 

2 + f f ∗
+ 

π2 n 

2 

H 

2 
, ( n = 1 , 2 , 3 . . . ) (A21) 

he maximally growing mode is realized at n = 1 . 
It is easy to see from Eq. (A21) that, with the infinitely 

eep layer (that is, when the last term on the right-hand 
ide of Eq. (A21) tends to zero), the formula for the growth 
ate fully corresponds to Eq. (A10) . For a layer of finite 
epth, Eq. (A21) is reduced to a fourth-degree polynomial 

 

4 + C 2 ω 

2 + C 0 = 0 (A22) 
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eeping in mind that in Eq. (A22) C 2 > 0 if Ro > −1 , the
ymmetric instability is possible only when C 0 < 0 , i.e. when 

 

2 N 

2 f f ∗ − γ 2 
ρ l 2 N 

4 + 

π2 ( f f ∗) 2 

H 

2 
< 0 (A23) 

t follows from Eq. (A23) that instability is possible when 
q. (A8) is satisfied, and the unstable wavenumber l lies in 
he range 

 

2 > 

( π f ( 1 + Ro ) ) 2 

U 

2 ( 1 − Ri ( 1 + Ro ) ) 
(A24) 

here U is the maximum velocity of the basic geostrophic 
ow. The horizontal length scale of unstable disturbances 
hould therefore satisfy the inequality 

 = 

2 π
l 

< 

2 U ( 1 − Ri ( 1 + Ro ) ) 1 / 2 

f ( 1 + Ro ) 
(A25) 

ormula (A24) without barotropic shear included (at Ro = 0 ) 
as first obtained by Stone ( Stone, 1966 ). Note that in 
he considered problem it is impossible to find the growth 
ate of the maximum growing perturbation: the larger the 
avenumber l, the greater the growth rate. This is a dis- 
dvantage of this problem, which should be further fixed 
y taking friction into account. However, one can assume 
hat it would not result in a large error in some cases 
f observations in the ocean to estimate the maximum 

rowth rate of disturbances in a layer of finite depth using 
tone’s (1966) formula Eq. (A10) . Relation Eq. (A21) helps 
igure 13 Velocity and vorticity fields generated by the analytic
ime moments t = 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 . 

18 
o choose such cases. If the ratio lN 
f  π

H is satisfied, then 
he estimate of the growth rate using formula Eq. (A10) is 
atisfactory. 

ppendix 2. Formation of striped texture by 

tirring of large scale inhomogeneities by the 

ddy field: an illustrating example 

et’s consider an illustrating example of the formation of 
triped texture by stirring of large scale gradients in a 2D, 
eriodically varying double-gyre velocity field described by 
he stream-function ( Shadden et al., 2005 ) 

 ( x, y, t ) = A sin ( π f ( x, t ) ) sin ( πy ) (A26) 

here 

f ( x, t ) = a ( t ) x 2 + b ( t ) x, a ( t ) = ε sin ( ωt ) , b ( t ) 

= 1 − 2 ε sin ( ωt ) (A27) 

ver the domain [0, 2] × [0, 1]. The analytical forms (A26) —
A27) are chosen to produce a simple, time-dependent 
wo-gyre flow with fixed boundaries, not to approach a 
olution of Navier—Stokes’ equations. For ε � = 0 the flow 

onsists of two gyres that conversely expand and contract 
eriodically in the x-direction such that the rectangle 
nclosing the gyres remains invariant. The velocity field 
 = −ψ y , v = ψ x and vorticity ζ = −u y + v x generated
al forms Eqs. (A26) —(A27) for A = 0 . 1 , ε = 0 . 1 , ω = 2 π at the 
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Figure 14 Evolution of a constant y -gradient of tracer concentration in the two-gyre velocity field shown in Figure 13 . The left 
panels correspond to the stationary case ( ε = 0 ), and the right panels to the non-stationary case at ε = 0 . 1 . 
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y the analytical forms (A26)—(A27) for A = 0 . 1 , ε = 0 . 1 ,
 = 2 π at different time moments are shown in Figure 13 . 
Advection of a passive tracer is described by the balance 

quation 

 t + ( uC ) x + ( vC ) y = 

dC 

dt 
+ C div ( u ) = 0 (A28) 

here C( x, y, t ) is the tracer concentration, dC 
dt = C t + u C x + 

 C y is the time derivative of concentration in the Lagrangian 
rame, and div (u ) = u x + v y is the velocity divergence. Let’s 
et the initial condition as a constant y -gradient of concen- 
ration 

 ( x, y, 0 ) = 100 + 500 y, x = [ 0 , 2 ] , y = [ 0 , 1 ] (A29) 

nd integrate Eq. (A28) numerically with the velocity field 
A26)—(A27) for A = 0 . 1 , ω = 2 π, and ε = 0 (stationary
ase) and ε = 0 . 1 (non-stationary case), using a Lagrangian 
rajectories approach as described in Väli et al. (2018) . 
he numerical solution presented in Figure 14 shows that 
n the stationary velocity field at t  1 , where t = 1 cor-
esponds to the period of eddy rotation, the initial con- 
tant gradient of concentration is wound in a spiral-like 
19 
tripe of enhanced concentration, and the number of cy- 
les in the stripe increases as t. In the non-stationary case, 
here t = 1 corresponds to both the eddy rotation and eddy 
xpansion-contraction periods, a complicated striped tex- 
ure is formed at t  1 . The number of stripes per eddy is
ikely determined by superposition of two periodical pro- 
esses and drastically increases with t. 
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