PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |

Tytuł artykułu

Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our study investigated the accumulation of chromium, nickel, lead and cadmium by maize (Zea mays L.), sunflower (Helianthus annuus L.), willow (Salix x smithiana Willd.), and poplar (Populus nigra L. x P. maximowiczii), and the realtionship between the contaminants in soil and in plants. The experiment was performed in contaminated soil (former waste incineration plant) at the Hradec Králové (Czech Republic) site. Plant and soil samples were collected from three plots with different risk element contents (higher amounts of Cd, Cu, Hg, Zn, Cr, Ni, and Pb). The total and available soil metal concentrations in soil were investigated. Only a low portion of risk elements were available for plants (6% Ni, 14% Cd, 1.3 % Pb, and less than 1% of Cr). Chromium, nickel, and lead showed a similar trend to element accumulation where the highest amount was found in plant roots, higher in herbs than in trees (6.83 mg Cr·kg⁻¹, 5.04 mg Ni·kg⁻¹, and 7.76 mg Pb·kg⁻¹). The highest cadmium concentration was found in leaves of willow (1.87 mg Cd·kg⁻¹) and roots of willow (3.05 mg Cd·kg⁻¹). The correlation between the concentration of risk elements in soil and in plants was the highest in the case of lead reaching up to R= 0.89. Results also indicated that translocation of Cr, Ni, Cd, and Pb from roots to aboveground biomass of willow and poplar was low (89-98% of risk elements was retained in roots). The highest translocation from plant roots to aboveground biomass of maize and sunflower was found in the case of Cd and Pb (57 and 83% of Cd, 56 and 76% of Pb). The behaviour of these elements concerning soil and plants differed among fields with unknown history of contamination and type of contaminants.

Wydawca

-

Rocznik

Tom

23

Numer

3

Opis fizyczny

p.753-761,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
autor
  • Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Praha 6 - Suchdol, Czech Republic
autor
  • Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Praha 6 - Suchdol, Czech Republic

Bibliografia

  • 1. GISBERT C., ROS R., DE HARO A. A plant genetically modified that accumulates Pb is expecially promising for phytoremediation. Biochem Biophy Res Comm 303, 440, 2003.
  • 2. KIMBROUGH D.E., COHEN Y., WINER A.M., CREELAM L., MABUNI C. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29, 1, 1999.
  • 3. SHANKER A.K., CERVANTES C., TAVERAC H.L., AVUDAINAYAGAMD S. Chromium toxicity in plants. Environ. Int. 31, 739, 2005.
  • 4. ZAYED A.M., TERRY N. Chromium in the environment: factors affecting biological remediation. Plant Soil 249, 139, 2003.
  • 5. KABATA-PENDIAS A., PENDIAS H. Trace Elements in Soils and Plants. CRC Press, LLC (Third Ed.); Boca Raton: Florida, pp. 1-403, 2001.
  • 6. SALT D.E., KATO N., KRAMER U., SMITH R.D., RASKIN I. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Phytoremediation of contaminated soil and water, pp. 189-200 (TERRY N., BANUELOS G.): CRC Press LLC: London, 2000.
  • 7. CHEN C., HUANG D., LIU J. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37, 304, 2009.
  • 8. FOLGAR S., TORRES E., PÉREZ-RAMA M., CID A., HERRERO C., ABALDE J. Dunaliella salina as a marine microalga highly tolerant to but a poor remover of cadmium. J. Hazard. Mater. 165, 486, 2009.
  • 9. PAN J., PLANT J., VOULVOULIS N., OATES C., IHLENFELD C. Cadmium levels in Europe: implications for human health. Environ. Geochem. Health 32, 1, 2010.
  • 10. KOOPMANS G.F., RÖMKENS P.F.A.M., FOKKEMA M.J., SONG J., LUO Y.M., JAPENGA J., ZHAO F.J. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ. Pollut. 156, 905, 2008.
  • 11. DEGRYSE F., BROOS K., SMOLDERS E., MERCKY R. Soil solution concentration of Cd and Zn can be predicted with a CaCl₂ soil extract. Eur. J. Soil Sci. 54, 149, 2003.
  • 12. DAVIES B.E. Lead. In: Heavy Metals in Soils, pp. 177-196 (ALLOWAY B.J.), Blackie and Son; Glasgow: UK, 1990.
  • 13. McLAUGLIN M.J., PARKER D.R., CLARKE J.M. Metals and micronutrients-food safety issues. Field Crop. Res. 60, 143, 1999.
  • 14. MARKERT B. Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetation 103, 1, 1992.
  • 15. TURPEINEN R., SALMINEN J., KAIRESALO T. Mobility and bioavailability of lead in contaminated boreal forest soil. Environ. Sci. Technol. 34, 5152, 2000.
  • 16. GABBRIELLI R., PANDORFINI T., VERGNAMO O., PALANDRI M.R. Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122, 271, 1990.
  • 17. GORLACH E., GAMBUS F. A study of the effect of sorption and desorption of selected heavy metals in soils on their uptake by plants. Zeszyty Problemowe Postepów Nauk Rolniczych 398, 47, 1992.
  • 18. MEERS E., VANDECASTEELE B., RUTTENS A., VANGRONSVELD J., TACK F.M.G. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ. Exp. Bot. 60, 57, 2007.
  • 19. VYSLOUŽILOVÁ M., TLUSTOŠ P., SZÁKOVÁ J., PAVLIKOVA D. As, Cd, Pb and Zn uptake Salix spp. clones grown in soils enriched by high loads of these elements. Plant Soil Environ. 49, (5), 191, 2003.
  • 20. SCHMIDT U. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32, 1939, 2003.
  • 21. BRICKER T.J., PICHTEL J., BROWN H.J., SIMMONS M. Phytoextraction of Pb and Cd from a superfound soil: effects of amendments and croppings. J. Environ. Sci. Health 36, 1597, 2001.
  • 22. GREGER M., LANDBERG T., Use of willow in phytoextraction. Int. J. Phytoremed. 1, (2), 115, 1999.
  • 23. NOWACK B., KOEHLER S., SCHULIN R. Use of diffusive gradients in thin films (DGT) in undisturbed field soils. Environ. Sci. Technol. 38, 1133, 2004.
  • 24. McBRIDE M. Toxic metals in sewage sludge-amended soils: has proportion of beneficial use discounted the risks? Adv. Environ. Res. 8, 5, 2003.
  • 25. KACÁLKOVÁ L., TLUSTOŠ P., SZÁKOVÁ J. Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environ. 55, (7), 295, 2009.
  • 26. KACÁLKOVÁ L., TLUSTOŠ P. The uptake of persistent organic pollutants by plants. Cent. Eur. J. Biol. 6, (2), 223, 2011.
  • 27. SZÁKOVÁ J., TLUSTOŠ P., BALÍK J., PAVLÍKOVÁ D., VANĚK V. The sequential analytical procedure as a tool for evaluation of As, Cd and Zn mobility in soil. Fres. J. Anal. Chem. 363, 594, 1999.
  • 28. QUAVAUVILLER P., URE A., MUNTAU H., GRIEPINK B. Improvement of analytical measurements within the BCR-program – Single and sequential extraction procedures applied to soil and sediment analysis. Int. J. Environ. Anal. Chem. 51, 129, 1993.
  • 29. MIHOLOVÁ D., MADER P., SZÁKOVÁ J., SLÁMOVÁ A., SVATOŠ Z. Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresenius J. Anal. Chem. 345, 256, 1993.
  • 30. PRETUZZELLI G. Recycling wastes in agriculture: heavy metals bioavailability. Agric. Ecosyst. Environ. 27, (1-4), 493, 1989.
  • 31. HENRY J.R. In an Overview of Phytoremediation of Lead and Mercury. NNEMS Report: Washington, D.C., pp. 3-9, 2000.
  • 32. MORAGHAN J.T. Accumulation of cadmium and selected elements in flax seed grown on a calcarous soil. Plant Soil 150, 61, 1993.
  • 33. SHUMAN L.M. Francionation method for soil microelement. Soil Sci. 140, (1), 11, 1985.
  • 34. ANGELOVA V., IVANOVA R., DELIBALTOVA V., IVANOV K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products 19, 197, 2004.
  • 35. MANI D., SHARMA B., KUMAR CH., PATHAK N., BALAK S. Phytoremediation potential of Helianthus annuus L. in sewage-irrigated indo-gangetic alluvial soils. Int. J. Phytoremed. 14, (3), 235, 2012.
  • 36. MOHANTY M., PATRA H.K. Phytoremediation potential of paragrass – an in situ approach for chromium contaminated soil. Int. J. Phytoremed. 14, (8), 796, 2012.
  • 37. SAWIDIS T., BREUSTE J., MITROVIC M., PAVLOVIC P., TSIGARIDAS K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Poll. 159, 3560, 2011.
  • 38. FARGAŠOVA A., BEINROHR E. Metal-metal interactions in accumulation of V⁵⁺, Ni²⁺, Mo⁶⁺, Mn²⁺ and Cu²⁺ under- and above-ground parts of Sinapis alba. Chemosphere 36, 1305, 1998.
  • 39. AKSOY A., DEMIREZEN D. Fraxinus excelsior as a Biomonitor of Heavy Metal Pollution. Pol. J. Environ. Stud. 15, (1), 27, 2006.
  • 40. FUZHONG W., WANQUIN Y., ZHANG J., LIQIANG, Z. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil. J. Hazard. Mater. 177, 268, 2010.
  • 41. MARKERT B. Plant as a biomonitors: Indicators for heavy metals in the terrestrial environment. VCH Weinheim: New Your/Basel/Cambridge, pp. 395-401, 1993.
  • 42. KABATA-PENDIAS, A., PIOTROWSKA M. Zanieczyszczenie Gleb i Roślin Uprawnych Pierwiastkami Sladowymi, CBR-opracowanie Problemowe; Warszawa: Poland, pp. 2-28, 1984.
  • 43. ALLEN S.E. Analysis of Ecological Materials, 2nd ed. Blackwell Scientific Publications: Oxford, 1989.
  • 44. WHATMUFF M.S. Applying biosolids to acid soil in New South Wales: are guideline soil metal limits from other countries appropriate? Aust. J. Soil Res. 40, 1041, 2002.
  • 45. SUN Y., ZHOU Q., LIU W., AN J., XU Z., WANG L. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-exluder Bidens pilosa L. J. Hazard. Mater. 165, 1023, 2009.
  • 46. HAN Y.L., YUAN H.Y., HUANG S.Z., GUO Z., XIA B., GU J. Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16, 557, 2007.
  • 47. SNEDECOR G.W., COCHRAN W.G. Statistical Methods. Sixth Edition; The Iowa State University Press, pp. 1-593, 1967.
  • 48. ORROÑO D.I., SCHINDLER V., LAVADO S.R. Heavy metal availability in Pelargonium hortorum rhizosphere: Interactions, uptake and plant accumulation. J. Plant Nutr. 35, (9), 1374, 2012.
  • 49. VANDECASTEELE B., MEERS E., VERVAEKE P., DE VOS, B., QUATAERT P., TACK F.M.G. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58, 995, 2005.
  • 50. SHALLARI S., SCHWARTZ C., HASKO A., MOREL J.L. Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci. Total Environ. 209, 133, 1998.
  • 51. SHAMS K.M., TICHY G., FISCHER A., SAGER M., PEER T., BASHAR A., FILIP K. Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil 328, 175, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d30a49ed-2ef7-442d-b311-ebd1efab3bc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.