PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 19 | 3 |

Tytuł artykułu

Antagonistyczny wpływ Lactobacillus acidophilus DSM 20079 i DSM 20242 na bakterie patogenne izolowane od ludzi

Treść / Zawartość

Warianty tytułu

EN
Antagonistic impact of Lactobacillus acidophilus DSM 20079 and DSM 20242 strains on pathogenic bacteria isolated from people

Języki publikacji

PL

Abstrakty

PL
W pracy przedstawiono wyniki dotyczące antagonistycznego działania Lactobacillus acidophilus DSM 20079 i DSM 20242 w stosunku do szczepów bakterii Helicobacter pylori, Escherichia coli i Salmonella enteritidis izolowanych od pacjentów. Największe strefy zahamowania wzrostu obserwowano we wszystkich testowanych szczepach H. pylori - wynosiły one ponad 20 mm. Testowane szczepy L. acidophilus hamowały również rozwój wszystkich szczepów S. enteritidis, a wielkość stref wynosiła powyżej 12 mm. Spośród szczepów E. coli były takie, których wzrost nie był hamowany przez testowane szczepy L. acidophilus. Wielkość stref zahamowania wzrostu pozostałych testowanych szczepów E. coli wynosiła od 11 do 16 mm.
EN
The paper presents the results of a study on the antagonistic activity of L. acidophilus DSM 20079 and DSM 20242 strains towards H. pylori, E. coli, and S. enteritidis strains isolated from patients. The largest zones of inhibited growth were found in all the H. pylori strains analyzed; those zones were larger than 20 mm. The L. acidophilus strains also inhibited the development of all the S. enteritidis strains and the size of the inhibition zones was larger than 12 mm. Amidst the E. coli strains, there were some strains that grew uninhibited by the selected L. acidophilus strains analyzed. The size of inhibited growth zones of other E. coli strains was between 11 and 16 mm.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

s.114-131,tab.,bibliogr.

Twórcy

autor
  • Instytut Technologii Żywności Pochodzenia Roślinnego, Wydział Nauk o Żywności, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 31, 60-624 Poznań
autor
  • Instytut Technologii Żywności Pochodzenia Roślinnego, Wydział Nauk o Żywności, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 31, 60-624 Poznań
  • Katedra Mikrobiologii Lekarskiej, Uniwersytet Medyczny w Poznaniu, ul.Wieniawskiego 3, 61-712 Poznań
  • Katedra Mikrobiologii Lekarskiej, Uniwersytet Medyczny w Poznaniu, ul.Wieniawskiego 3, 61-712 Poznań
autor
  • Instytut Technologii Żywności Pochodzenia Roślinnego, Wydział Nauk o Żywności, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 31, 60-624 Poznań

Bibliografia

  • [1] Anastasiadou S., Papagianni M., Filiousis G., Ambrosiadis I., Koidis P.: Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresource Technol., 2008, 99 (13), 5384-5390.
  • [2] Andrzejewska E., Szkaradkiewicz A.: Antagonistyczne oddziaływanie Lactobacillus acidophilus wobec klinicznych szczepów Helicobacter pylori. Med. Dośw. Mikrobiol. 2007, (59), 59-64.
  • [3] Arakawa K., Kawai Y., Nishimura J., Kitazawa H., Saito T.: Negative effect od divalent metal cations on production of gassericin T, a bacteriocin produced by Lactobacillus gasperi, In milk-based media. Int. Dairy J., 2009, 19, 612-616.
  • [4] Bendali F., Gaillard-Martinie B., Hebraud M., Sadoun D.: Kinetic of production and mode of action the Lactobacillus paracasei subsp. paracasei anti-listerial bacteriocin, an Algerian isolate. LWT - Food Sci. Technol., 2008, 41, 1784-1792.
  • [5] Bhunia A., Kim W.J., Johnson M.S., Ray B.: Puryfication, characterization and antimicrobial spectrum of bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol., 1998, (65), 261-268.
  • [6] Biswas S.R., Ray P., Johnson M.C., Ray B.: Influence of growth conditions on the production of bacteriocin, pediocin AcH by Pediococcus acidilactici. H. Appl. Environ. Microb., 1991, (57), 1265-1267.
  • [7] Bogovic-Matijasic B., Rogelj I.: Bacteriocin complex of Lactobacillus acidophilus LF221 - production studies in MRS media at different pH values and effect against Lactobacillus helveticus ATCC 15009. Process Biochem., 1997, 33 (3), 345-352.
  • [8] Coburn P.S., Pillar C.M., Jett B.D., Haas W., Gilmore M.S.: Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 2004, (306), 2270-2272.
  • [9] Corsetti A., Settanni L., Braga T.M., Silva Lopes M.F., Suzzi G.: An investigation of the bacteriocinogenic potential of lactic acid bacteria associated with wheat (Triticum durum) kernels and non- conventional flours. LWT - Food Sci. Technol., 2007, (41), 1173-1182.
  • [10] Coconier M. H., Lievin V., Hemery E., Servin A. L.: Antagonistic activity against Helicobacter infection in vivo and in vitro by the human Lactobacillus acidophilus strain L.B. Appl. Environ. Microb., 1998, 64 (11), 4573-4580.
  • [11] Corsetti A., Settanni L., Braga T.M., Silva Lopes M.F., Suzzi G.: An investigation of the bacterioci- nogenic potential of lactic acid bacteria associated with wheat (Triticum durum) kernels and non- conventional flours. LWT- Food Sci. Technol., 2007, (41), 1173-1182.
  • [12] De Vuyst L., Vandamme E.J.: Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol., 1992, 138, 571-578.
  • [13] De Vuyst L., Callewaert R., Crabbe K.:Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavorable growth conditions. Microbiology, 1996, 4 (142), 817-827.
  • [14] Delgado A., Brito D., Peres C., Noe-Arroyo F., Garrido-Fernandez A.: Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiol., 2005, (22), 521-528.
  • [15] Delgado A., Lopez F.N.A., Brito D., Peres C., Fevereiro P., Garrido-Fernandez A.: Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol., 2007, (130), 193-200.
  • [16] Deraz S.F., Nordberg Karlsson E., Hedstrom M., Andersson M.M., Mattiasson B.: Puryfication and characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J. Biotechnol., 2005, (117), 343-354.
  • [17] De Vuyst L., Callewaert R., Crabbe K.: Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavorable growth conditions. Microbiology 1996, (142), 817-827.
  • [18] Felley C., Michetti P.: Probiotics and Helicobacter pylori. Best Pract. Res. Cl. G., 2003, 17 (5), 785-791.
  • [19] Georgalaki M., Papadelli M., Chassioti E., Anastasiou R., Aktypis A., De Vuyst L., Van Driessche G., Devreese B., Tsakalidou E.: Milk protein fragments induse the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus ACA-DC 18. Applied Environ. Microb., 2010, 76(4), 1143-1151.
  • [20] Goderska K., Czarnecki Z.: Characterization of selected strains from Lactobacillus acidophilus and Bifidobacterium bifidum. Afr. J. Microbiol. Research 2007, 1 (6), 068-078.
  • [21] Gorbach S. L.: Probiotics in the third millennium. Digest Liver Dis., 2002, 34 (Suppl. 2), S2-S7.
  • [22] Huang Y., Luo Y., Zhai Z., Zhang H., Yang C., Tian H., Li Z., Feng J., Liu J., Hao Y.: Characterization and application of an anti-listeria bacteriocin produced by Pediococcus pento- saceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 2009, (20), 1030-1035.
  • [23] Joeger M.C., Klaenhammer T.R.: Characterisation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol., 1986, (167), 439-446.
  • [24] Li J., Song D.,Gu Q.: Optimization of plantaricin production by Lactobacillus plantarum ZJ316. Wei Sheng Wu Xue Bao, 2008, 48(6), 818-823.
  • [25] Maldonado-Barragan A., Ruiz-Barba J.L., Jimenez-Diaz R.: Knockout of three-component regulatory system reveals that the apparently constitutive plantaricin-production phenotype shown by Lacto- bacillusplantarum on solid medium is regulated via quorum sensing. Int. J. Food Microbiol., 2009, (130), 35-42.
  • [26] Matsusaki H., Endo N., Sonomoto K., Ishizaki A.: Lantibiotic nisin Z fermentative production by Lactococcus lactis I0-1: relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biot., 1996, (45), 36-40.
  • [27] Meghrous J., Huot E., Quittelier M., Petitdemange H.: Regulation of nisin biosynthesis by contionuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res. Microbiol., 1992, 143(99), 879-890.
  • [28] Mottet C., Michetti P.: Probiotics: wanted dead or alive. Digest. Liver Dis., 2005, 37, 3-6.
  • [29] Ogunbanwo S.T., Sanni A.I., Onilude A.A.: Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr. J. Biotechnol., 2003, (2),179-184.
  • [30] Parente E., Ricciardi A.: Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biot., 1999, (52), 628-638.
  • [31] Powell J.E., Witthuhn R.C., Todorov S.D., Dicks L.M.T.: Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J., 2007, (17), 190-198.
  • [32] Quadri L.E.N. Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. A.V. Leeuwenhoek, 2002, (82), 133-145.
  • [33] Rabe L. K, Hillier S. L.: Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J. Clin. Microbiol. 2003, 41, 3260-3264.
  • [34] Sarika A.R., Lipton A.P., Aishwarya M.S.: Bateriocin production by a new isolate of Lactobacillus rhamnosus GP1 under different culture conditions. Adv. J. Food Sci. Technol., 2010, 2(5), 291-297.
  • [35] Settani L., Valmorri S., Suzzi G., Corsetti A.: The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiol., 2008, (25), 722-728.
  • [36] Sip A. Produkcja bakteriocyn przez bakterie mlekowe. Biotechnologia 1999 , 2 (45), 145-166.
  • [37] Sip A., Krasowska M., Więckowicz M., Grajek W.: Metody skriningu bakteriocynogennych bakterii fermentacji mlekowej. Żywność. Nauka. Technologia. Jakość. 2009, 1 (62), 5-26.
  • [38] Strus M.: A new method for evaluation of the antagonistic action of bacterial lactic acid (LAB) on selected pathogenic indicator bacteria. Med. Dosw. Mikrobiol. 1998, 50, 123-130.
  • [39] Strus M., Pakosz K., Gościniak H., Przondo-Mordarska A., Rożynek E., Pituch H., Meisel- Mikołajczyk F., Heczko P. B.: Aktywność antagonistyczna szczepów Lactobacillus przeciwko beztlenowym patogenom przewodu pokarmowego (Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Clostridium difficile). Med. Dosw. Mikrobiol., 2001, 53, 133-142.
  • [40] Taniguchi M., Hoshino., Urasaki H., Fujii M. Continuous production of antibiotic polypeptide (nisin) by Lactococcus lactis using a bioreactor coupled to a microfiltration module. J Ferment. Bioeng. 1994, 6, 704-708.
  • [41] Tabasco R., Garcia-Cayuela T., Pelaez C., Requena T.: Lactobacillus acidophilus La-5 increases lactacin B production whet it senses live target bacteria. Int. J. Food Microbiol., 2009, (132), 109-116.
  • [42] Todorov S.D., Dicks L.M.T.: Optimalization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J. Microbiol., 2005, (43), 370-374.
  • [43] Todorov S.D., Dicks L.M.T.: Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol. Res. 2006, (161), 102-108
  • [44] Todorov S.D., Dicks L.M.T.: Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe, 2009, 15: 65-73
  • [45] Todorov S.D., Dicks L.M.T.: Effect of growth medium on bacteriocin production by Lactobacillus plantarum ST194BZ, a strain isolated from Boza. Food Technol. Biotech., 2005, (43), 165-173.
  • [46] Trabi M., Craik D.J.: Circular proteins - no end in sight. Trends in Biochem. Sci., 2002, (27), 132-138
  • [47] Yang R., Ray B.: Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiol., 1994, 11(4), 281-291.
  • [48] Young R. J., Huffman S.: Probiotic use in children. J. Pediatr. Health Care, 2003, 17 (6), 277-283.
  • [49] Zamfir M., Callewaert r., Cornea P. C., De Vuyst L.: Production kinetics of acidophilin 801, a bacteriocin produced by Lactobacillus acidophilus IBB 801. FEMS Microbiol. Lett., 2002, (190), 305-308.
  • [50] Zendo T., Eungruttanagorn N., Fujioka S., Tashiro Y., Nomura K., Sera Y., Kobayashi G., Nakayama J., Ishizaki A., Sonomoto K.: Identification and production of bacteriocin from Enterococcus mundtii QU2 isolated from soybean. J. Appl. Microbiol., 2005, (99), 1181-1190.
  • [51] Zhang J., Liu G., Li P. Qu Y.: Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control, 2010, (21), 198-202.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d2f328cc-078b-40d0-8bc3-c6d849d65ef1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.