Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 78 | 2 |
Tytuł artykułu

Morphological study of myelinated and unmyelinated fibres in the sacrococcygeal dorsal roots of the rat

Warianty tytułu
Języki publikacji
Background: The number and calibre of myelinated and unmyelinated fibres of the sacrococcygeal dorsal roots innervating the tail of rats were studied by means of light and electron microscopy. Materials and methods: There were an estimated total of 12,500 myelinated and 25,500 unmyelinated dorsal root fibres innervating the tail of a rat. Results: The results showed that from the second sacral (S2) to the fourth sacral (S4) segment, the fibre diameter spectrum of myelinated fibres within each dorsal root was bimodal with two peaks at 5 microns and 10 microns, respectively. The first sacral (S1) segment was composed of numerous smaller-size myelinated fibres, thus forming a right-skewed distribution. The coccygeal (Co) segments showed a unimodal distribution peaking at 10 microns for the first (Co1) segment and gradually shifting to 7 microns for the third (Co3) segment. Overall, there was a continuous relative increase of the larger vs. the smaller myelinated fibres from the sacral to coccygeal segments. The fibre diameter of unmyelinated fibres of all these roots was unimodal with a single peak at 0.5 microns. The ratio of unmyelinated to myelinated fibre numbers was on average 2.83 for the S1–S2 roots, 1.66 for the S3–S4 roots, and 1.24 for the coccygeal roots. Conclusions: The comparison of the left- and right-side nerve fibres show that there was no significant difference, thus implying a symmetrical sensory innervation of the rat’s tail. (Folia Morphol 2019; 78, 2: 267–273)
Słowa kluczowe
Opis fizyczny
  • Department of Life Science, National Taiwan University, Taipei, Taiwan
  • Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
  • Department of Life Science, National Taiwan University, Taipei, Taiwan
  • 1. Agostoni E, Chinnock JE, Daly MB, et al. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol. 1957; 135(1): 182–205, indexed in Pubmed: 13398974.
  • 2. Applebaum ML, Clifton GL, Coggeshall RE, et al. Unmyelinated fibres in the sacral 3 and caudal 1 ventral roots of the cat. J Physiol. 1976; 256(3): 557–572, indexed in Pubmed: 1271293.
  • 3. Besson JM, Chaouch A. Peripheral and spinal mechanisms of nociception. Physiol Rev. 1987; 67(1): 67–186, doi: 10.1152/physrev.1987.67.1.67, indexed in Pubmed: 3543978.
  • 4. Boyd IA, Kalu KU. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb. J Physiol. 1979; 289: 277–297, indexed in Pubmed: 458657.
  • 5. Carlton S, Coggeshall R. Sprouting and reorganization in the spinal cord after nerve injury. Mechanisms and Mediators of Neuropathic Pain. 2002: 89–106, doi: 10.1007/978-3-0348-8129-6_6.
  • 6. Chung K, Lee BH, Yoon YW, et al. Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. J Comp Neurol. 1996; 376(2): 241–252, doi: 10.1002/(SICI)1096-9861(19961209)376:2<241::AIDCNE6>3.0.CO;2-3, indexed in Pubmed: 8951640.
  • 7. Coggeshall RE, Coulter JD, Willis WD. Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J Comp Neurol. 1974; 153(1): 39–58, doi: 10.1002/cne.901530105, indexed in Pubmed: 4817345.
  • 8. Coggeshall RE, Ito H. Sensory fibres in ventral roots L7 and Si in the cat. J Physiol. 1977; 267(1): 215–235, indexed in Pubmed: 559756.
  • 9. Coggeshall RE. Law of separation of function of the spinal roots. Physiol Rev. 1980; 60(3): 716–755, doi: 10.1152/physrev.1980.60.3.716, indexed in Pubmed: 6994143.
  • 10. Cragg BG, Thomas PK. The relationships between conduction velocity and the diameter and internodal length of peripheral nerve fibres. J Physiol. 1957; 136(3): 606–614, indexed in Pubmed: 13429525.
  • 11. Emery DG, Ito H, Coggeshall RE. Unmyelinated axons in thoracic ventral roots of the cat. J Comp Neurol. 1977; 172(1): 37–47, doi: 10.1002/cne.901720103, indexed in Pubmed: 838878.
  • 12. Evans DH, Murray JG. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat. 1954; 88(3): 320–337, indexed in Pubmed: 13192020.
  • 13. Ewart DP, Kuzon WM, Fish JS, et al. Nerve fibre morphometry: a comparison of techniques. J Neurosci Methods. 1989; 29(2): 143–150, indexed in Pubmed: 2770338.
  • 14. Gabella G, Pease HL. Number of axons in the abdominal vagus of the rat. Brain Res. 1973; 58(2): 465–469, indexed in Pubmed: 4756138.
  • 15. Hulsebosch CE, Coggeshall RE. Quantitation of sprouting of dorsal root axons. Science. 1981; 213(4511): 1020–1021, indexed in Pubmed: 7268404.
  • 16. Iggo A. The electrophysiological identification of single nerve fibres, with particular reference to the slowest-conducting vagal afferent fibres in the cat. J Physiol. 1958; 142(1): 110–126, indexed in Pubmed: 13564422.
  • 17. Kissin I, Freitas CF, Mulhern HL, et al. Sciatic nerve block with resiniferatoxin: an electron microscopic study of unmyelinated fibers in the rat. Anesth Analg. 2007; 105(3): 825–831, doi: 10.1213/01.ane.0000277491.40055.47, indexed in Pubmed: 17717246.
  • 18. Langford LA, Coggeshall RE. Branching of sensory axons in the peripheral nerve of the rat. J Comp Neurol. 1981; 203(4): 745–750, doi: 10.1002/cne.902030411, indexed in Pubmed: 7328204.
  • 19. Leek BF. Abdominal and pelvic visceral receptors. Br Med Bull. 1977; 33(2): 163–168, indexed in Pubmed: 324560.
  • 20. Matsumoto G, Tasaki I. A study of conduction velocity in nonmyelinated nerve fibers. Biophys J. 1977; 20(1): 1–13, doi: 10.1016/S0006-3495(77)85532-X, indexed in Pubmed: 901899.
  • 21. McLachlan EM, Jänig W, Devor M, et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993; 363(6429): 543–546, doi: 10.1038/363543a0, indexed in Pubmed: 8505981.
  • 22. Mei N. Mecanorecepteurs vagaux digestifs chez le chat. Exp Brain Res. 1970; 11(5), doi: 10.1007/bf00233971, indexed in Pubmed: 5490689.
  • 23. Ochoa J, Mair WG. The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol. 1969; 13(3): 197–216, indexed in Pubmed: 5805973.
  • 24. Orgel MGA. Critical review of histological methods used in the study of nerve regeneration. Nerve Repair and Regeneration: Its clinical and experimental basis. St Louis: Mosby. 1980: 141–148.
  • 25. Paintal AS. Vagal Afferent Fibres. Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie. 1963: 74–156, doi: 10.1007/978-3-642-49896-1_3.
  • 26. Ritchie JM. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc R Soc Lond B Biol Sci. 1982; 217(1206): 29–35, doi: 10.1098/rspb.1982.0092, indexed in Pubmed: 6131421.
  • 27. Rushton WAH. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951; 115(1): 101–122, indexed in Pubmed: 14889433.
  • 28. Schalow G, Zäch GA, Warzok R. Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion. J Auton Nerv Syst. 1995; 52(2-3): 125–150, indexed in Pubmed: 7615895.
  • 29. Schmalbruch H. Fiber composition of the rat sciatic nerve. Anat Rec. 1986; 215(1): 71–81, doi: 10.1002/ar.1092150111, indexed in Pubmed: 3706794.
  • 30. Serratrice G, Mei N, Pelissier JF, et al. Cutaneous, muscular and visceral unmyelinated afferent fibres: comparative study. Peripheral Neuropathies. 1978: 69–82, doi: 10.1016/b978-0-444-80079-4.50010-7.
  • 31. Waxman SG. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve. 1980; 3(2): 141–150, doi: 10.1002/mus.880030207, indexed in Pubmed: 6245357.
  • 32. Willis WD. The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Pain Headache. 1985; 8: 1–346, indexed in Pubmed: 2983301.
  • 33. Yen CT, Chen RS. Tail region of the primary somatosensory cortex and its relation to pain function. Novel Trends in Brain Science. 2018: 233–252, doi: 10.1007/978-4-431-73242-6_14.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.