Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 16 | 4 |
Tytuł artykułu

Influence of CCC and trinexapac-ethyl on the expression of genes involved in gibberellic biosynthesis and metabolism pathway in isogenic line with Rht12 dwarfing gene

Treść / Zawartość
Warianty tytułu
Języki publikacji
Occurrence of lodging is a result of environmental stress factors and causes significant losses in crop yields. One of the major factors determining plant resistance to lodging is stem length. Thought, the introduction of the dwarfing genes into genome or application of growth regulators, that inhibit gibberellins biosynthesis, are known as the most important approaches in lodging prevention. In this study we analyzed the influence of chlormequat chloride (CCC) and trinexapac-ethyl application on transcriptome of common wheat (Triticum aestivum L.) ‘Bezostaya 1’. For analysis, the tall control line and isogenic line carrying Rht12 dwarfing gene were selected. Subsequently, the real-time PCR technique was used to determine the expression of five genes encoding enzymes involved in gibberellins biosynthesis pathway (CPS, KS, GA20ox, GA3ox and GA2ox).
Słowa kluczowe
Opis fizyczny
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
  • Börner, A., Plaschke, J., Korzun, V., Worland, A.J. (1996). The relationship between the dwarfing genes of wheat and rye. Euphytica, 89, 69–75.
  • Börner, A., Worland, A., Plaschke, J., Schumann, E., Law, C.N. (1993). Pleiotropic effects of genes for reduced heigh (Rht) and day-length insensivity (Pdp) on yield and its components for wheat grown in Middle Europe. Plant Breed, 111, 204–216.
  • Borojević, K., Borojević, K. (2005). The transfer and history of ‘Reduced Height Genes’ (Rht) in wheat from Japan to Europe. J. Heredity, 96, 455–459.
  • Boutrot, F., Guiro, A., Rémi, A., Jordier, P., Gautier, M. (2005). Wheat non-specific lipid protein genes display a complex pattern of expression in developing seeds. Biochem. Biophys. Acta, 1730, 114–125.
  • Chen, L., Phillips, A.L., Condon, A.G., Parry, M.A., Hu, Y.G. (2013). GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS One, 8(4), e62285. DOI:10.1371/journal.pone.0062285.
  • Chen, S., Gao, R., Wang, H., Wen, M., Xiao, J., Bian, N., et al. (2015). Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 203, 583– 594.
  • Dennis, D.T., Upper, C.D., West, C.A. (1965). An enzymic site of inhibition of gibberellin biosynthesis by AMO 1618 and other plant growth retardants. Plant Physiol. 40, 948–952.
  • Espindula, M.C., Rocha, V.S., Grossi, J.A.S., Souza, M.A., Souza, L.T., Favarato, L.F. (2009). Use of growth retardants in wheat. Planta Daninha, 27(2), 379–387.
  • Gale, M.D., Youssefian, S. (1985). Dwarfing genes in wheat. In: Progress in plant breeding. 1st ed., Russell, G.E. (ed.), Butterworths, London, 1–35.
  • Giannakoula, A.E., Ilias, I.F., Dragišić Maksimović, J.J., Maksimović, V.M., Živanović, B.D. (2012). The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. J. Food Compos. Anal., 28, 46–53.
  • Hedden, P., Kamiya, Y. (1997). Gibberellin biosynthesis: enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 431–460.
  • Hedden, P., Sponsel, V. (2015). A century of gibberellin research. J. Plant Growth Regul., 34(4),740–760.
  • Jan, A., Komatsu, S. (1997). Functional characterization of gibberellin-regulated genes in rice using microarray system. Genom. Proteom. Bioinform., 4(3), 137–144.
  • Kende, H., Ninnemann, H., Lang, A. (1963). Inhibition of gibberellic acid biosynthesis in Fusarium moniliforme by AMO-1618 and CCC. Naturwissenschaften, 50, 599–600.
  • Konzak, C.F. (1982). Evaluation and genetic analysis of semi-dwarf mutants of wheat. In: Semi-dwarf cereal mutants and their use in cross breeding.
  • IAEA-TECDOC 268. Proceedings of a Research Co-ordination Meeting, Joint FAO/IAEA Division, Vienna, Austria, March 1981. IAEA, Vienna, 25–37.
  • Korzun, V., Röder, M., Worland, A.J., Börner, A. (1997). Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed., 116, 227–232.
  • Kowalczyk, K. (1997). Historia i wykorzystanie w hodowli pszenicy genów karłowatości pochodzących od Norin 10. Post. Nauk Rol., 1, 63–71
  • Kowalczyk, K., Miazga, D. (1996). Geny karłowatości w pszenicy. Hod. Rośl. Nasienn. Biul. Branż., 4, 1–4.
  • Kowalczyk, K., Worland, A.J., Miazga, D. (1997b). Pleiotropic effects of Rht1, Rht2, and Rht3 genes in wheat isogenic lines Maris Huntsman and Maris Widgeon. J. Gen. Breed., 51, 129–135.
  • Kulig, B., Kania, S., Szafrański, W., Zając, T. (2001). Reakcja wybranych odmian pszenicy ozimej na intensywność uprawy. Biul. IHAR, 218/219, 117–126.
  • Lou, X., Li, X., Li, A., Pu, M., Shoaib, M., Liu, D., Sun, J., Zhank, A., Yang, W. (2016). Molecular characterization of three gibberellin-insensitive dwarf2 homologous genes in common wheat. PLoS One, 11(6), 1–19.
  • Matysiak, K. (2006). Influence of trinexapac-ethyl on growth and development of winter wheat. J. Plant Prot. Res., 46, 133–143.
  • Matysiak, K., Kaczmarek, S., Adamczewski, K. (2010). The influence of trinexapac-ethyl, chlorocholine chloride, metconazole and tebuconazole on plant morphology and yield of winter oilseed rape depending on time of application. Oilseed Crops, 31, 361–372.
  • Miazga, D., Worland, A.J., Kowalczyk, K. (1997). Pleiotropic effects of dwarfing (Rht) genes in near-isogenic lines of common wheat cv. Bezostaya in a Central European environment. Acta Agron. Hung., 45(4), 419– 426.
  • Moons, A. (2008). Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta, 229(1), 53–71.
  • Olszewski, N., Sun, T., Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell., 14, 61–80.
  • Olumekun, V.O. (1996) An analysis of the response of winter wheat (Triticum aestivum) components to Cycocel (Chlormequat) application. J. Agron. Crop Sci., 176, 145–150.
  • Oswalt, J.S., Rieff, J.M., Severino, L.S., Auld, D.L., Bednarz, C.W., Ritchie, G.L. (2014). Plant height and seed yield of castor (Ricinus communis L.) sprayed with growth retardants and harvest aid chemicals. Ind. Crop Prod., 61, 272–277.
  • Pearce, S., Saville, R., Vaughan, S.P., Chandler, P.M., Wilhelm, E.P., Sparks, C.A., Korolev, A., Al-Kaff, N., Boulton, M.I., Phillips, A.L., Hedden, P., Nicholson, P., Thomas, S.G. (2011). Molecular characterisation of Rht-1 dwarfing genes in hexaploid wheat (Triticum aestivum). Plant Physiol., 157, 1820–1831.
  • Peng, D., Chen, X., Yin, Y., Lu, K., Yang, W., Tang, Y., Wang, Z. (2014). Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop Res. 157, 1–7.
  • Rademacher, W. (2000). Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 501– 531.
  • Rajala, A., Peltonen-Sainio, P. (2001). Grain and oil drops: plant growth regulator effects on spring cereal root and shoot growth. Agron. J., 93, 936–943.
  • Rajala, A., Peltonen-Sainio, P. (2002). Timing applications of growth regulators to alter spring cereal development at high latitudes. Agric. Food Sci. Finland, 11, 233– 244.
  • Rampino, P., Spano, G., Pataleo, G., Mita, G., Napier, J.A., Di Fonzo, N., Shewry, P.R., Perrotta, C. (2006). Molecular analysis of a durum wheat ‘stay green’ mutant: Expression pattern of photosynthesis-related genes. J. Cereal Sci. 43, 160–168.
  • Stachecki, S., Praczyk, T., Adamczewski, K. (2004). Adjuvant effects on plant growth regulators in winter wheat. J. Plant Prot. Res., 44, 365–371.
  • Sutka, J., Kovacs, G. (1987). Chromosomal location of dwarfing gene Rht12 in wheat. Euphytica, 36, 521–523.
  • Worland, A.J., Law, C.N. (1986). Genetic Analysis of Chromosome 2D of Wheat. I. The Location of Genes Affecting Height, Day-Length Insensitivity, Hybrid Dwarfism and Yellow-Rust Resistance. Z. Pflanzezüchtg, 96, 331–345.
  • Worland, A.J., Law, C.N., Petrović, S. (1990). Height reducing genes and their importance to Yugoslavian winter wheat varieties. Savrem. Poljopr. Zb., 38(3–4), 245–257.
  • Worland, A.J., Korzun, V., Röder, M.S., Ganal, M.W., Law, C.N. (1998). Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet., 96, 1110–1120.
  • Xu, C., Huang, B. (2012). Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in Kentucky bluegrass. J. Plant Growth Regul., 31, 25–37.
  • Yang, Y., Zhang, F., Ge, S. (2009). Evolutionary rate patterns of the gibberellin pathway genes. BMC Evol. Biol. 9, 206.
  • Zanke, C.D., Ling, J., Plieske, J., Kolers, S., Ebmayer, E., Korzun, V., Argillier, O., Stiewe, G., Hinze, M., Neumann, K., Ganal, M.W., Röder, M.S. (2014). Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One, 9(11), 1–16.
  • Zou, J.W., Sun, M.X., Yang, H.Y. (2002). Single-embryo RT-PCR assay to study gene expression dynamics during embryogenesis in Arabidopsis thaliana. Plant Mol. Biol. Report., 20, 19–26.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.