EN
Triterpene saponosides are widely distributed plant secondary metabolites characterized by relatively low systemic cytotoxicity and a range of biological activities. These include anti-inflammatory, antimicrobial, vasoprotective and antitumor properties. In particular, the ability of saponins to enhance the cytotoxicity of chemotherapeutic drugs opened perspectives for their application in combined cancer chemotherapy. Here, we used human prostate cancer DU-145 cells as an in vitro model to elucidate the synergy of the interactions between biological activities of an oleanane type 13β,28-epoxy triterpene saponoside (Lclet 4) and mitoxantrone, which is a cytostatic drug commonly used in prostate cancer therapy. No cytotoxic or pro-apoptotic effect of Lclet 4 and mitoxantrone administered at the concentrations between 0.05 and 0.1 µg/ml could be seen. In contrast, cocktails of these agents exerted synergistic pro-apoptotic effects, accompanied by the activation of the caspase 3/7 system. This effect was paralleled by attenuating effects of Lclet 4/mitoxantrone cocktails on the invasive potential, metalloproteinase expression and motility of DU-145 cells. Multifaceted and additive effects of Lclet 4 and mitoxantrone on basic cellular traits crucial for prostate cancer progression indicate that the combined application of both agents at systemically neutral concentrations may provide the basis for new promising strategies of prostate cancer chemotherapy.