PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Comparing estimation methods for soil organic carbon storage in small karst watersheds

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to accurately estimate soil organic carbon storage (SOCS), 2,755 soil profiles and 23,536 soil samples were acquired by grid method, followed by a study on the SOCS, soil bulk density (SBD), gravel content (GC), and distribution characteristics of rock coverage (RC) in a small karst watershed (SKC). Then on the basis of soil profile summation, an investigation was done on the applicability of RC/GC-based soil type method, land utilization type method, and aspect method to the estimation of SOCS in SKC at different depths. As shown by the results, the average soil organic carbon content (SOC) in the soil samples ranged from 5.25 to 24.87 g.kg⁻¹, and decreased with the soil depth increasing; the average SBD ranged from 1.17 to 1.41 g.cm⁻³, which first increased with the soil depth increasing and then tended to be steady; the average GC ranged from 0 to 20.15%, which decreased gradually with the soil depth increasing and finally to zero; the RC ranged from 0 to 86.32% at different sample points. RC and GC greatly affected the estimation of SOCS, so after correction based on RC and GC, the soil type method was adopted for estimation, concluding that SOCS at depths of 0-20 cm, 0-30 cm, and 0-100 cm was 341.82×10⁶ kg, 449.29×10⁶ kg, and 738.351×06 kg, respectively; RC and GC affected white sandy soil the most, as shown by the following SOCS estimated by the land utilization type method: 319.56×10⁶ kg, 416.04×10⁶ kg, and 607.02×10⁶ kg, respectively, at depths of 0-20 cm, 0-30 cm, and 0-100 cm; RC and GC affected wasteland the most, as shown by the following SOCS estimated by the aspect method: 318.64×10⁶ kg, 411.63×10⁶ kg, and 628.46×10⁶ kg, respectively, at depths of 0-20 cm, 0-30 cm, and 0-100 cm; RC and GC affected the SOCS in the south slope the most; in terms of catchment scale, the “vertical stratification + horizontal classification” pattern was expanded to the “land utilization type method” and “aspect method.” For estimating the SOCS in topsoil, the aspect method achieved the best result, while the land utilization type method achieved the best result at a depth of 100 cm.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1879-1890,fig.,ref.

Twórcy

autor
  • Forest Resource and Environment Research Center of Guizhou Province, Guizhou University, Guiyang, P.R. China
  • College of Forestry, Guizhou University, Guiyang, P.R. China
autor
  • College of Forestry, Guizhou University, Guiyang, P.R. China
  • Puding Karst Ecosystem Research Station of Guizhou Province, Puding, P.R. China
autor
  • Puding Karst Ecosystem Research Station of Guizhou Province, Puding, P.R. China
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, P.R. China
autor
  • Forest Resource and Environment Research Center of Guizhou Province, Guizhou University, Guiyang, P.R. China
  • College of Forestry, Guizhou University, Guiyang, P.R. China

Bibliografia

  • 1. VANDEN-BYGAART A.J., GREG E.G., ANGERS D.A., STOKLAS U.F. Uncertainty analysis of soil organic carbon stock change in Canadian cropland from 1991 to 2001. Global Change Biol. 10, 983, 2004.
  • 2. BATJES N.H. Total carbon and nitrogen in soils of the world. Eur J Soil Sci. 47, 151, 1996.
  • 3. BOLIN B. Change of land biota and their importance for the carbon cycle. Science. 196, 613, 1977.
  • 4. SELMA Y.K. Effects of afforestation on soil organic carbon and other soil properties. Catena. 123 (10), 62, 2014.
  • 5. JONES C., MC-CONNELL C., COLEMAN K., COX P., FALLOON P., Jenkinson D., Powlson D. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11, 154, 2005.
  • 6. RODRIGUEZ-MURILLO J.C. Organic carbon content under different types of land use and soil in peninsular Spain. Biol Fertil Soils. 33 (1), 53, 2001.
  • 7. STEFFENS M., K¨OLBL A., K¨OGEL-Knabner I. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. Eur. J. Soil. Sci. 60, 198, 2009.
  • 8. ZHENG H., SU Y.R., HE X.Y., HU L.N., WU J.S., HUANG D.Y., LI L., ZHAO C.X. Modified method for estimating organic carbon density of discontinuous soil in peak-karst regions in southwest China. Sci Environ Earth Sci. 67, 1743, 2012.
  • 9. CHEN X.B., ZHENG H., ZHANG W., HE X.Y., LI L., WU J.S., HUANG D.Y,. SU Y.R. Effects of land cover on soil organic carbon stock in a karst landscape with discontinuous soil distribution. J Mt Sci. 11, 774, 2014.
  • 10. LU X.Q., TODA H,. DING F.J., FANG S.Z., YANG W.X., XUA H.G. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur J Soil Biol. 61, 49, 2014.
  • 11. TANG Y.Q, KAI S, ZHANG X.H., ZHOU J., YANG Q., LIU Q. Microstructure changes of red clay during its loss and leakage in the karst rocky desertification area. Environ Earth Sci. 75, 10, 2016.
  • 12. .ZHANG W., CHEN H.S., WANG K.L., SU Y.R., ZHANG J.G., YI A.J. The heterogeneity and its influencing factors of soil nutrients in peakcluster depression areas of karst region. Agric Sci China. 6, 322, 2007.
  • 13. ZHANG J.Y., DAI M.H., WANG L.C., ZENG C.F., Su W.C. The challenge and future of rocky desertification control in karst areas in southwest China. Solid Earth Discuss.7, 3271, 2015.
  • 14. YU D.S., ZHANG Z.Q., YANG H., SHI X.Z., TAN M.Z., SUN W.X., WANG H.J. Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China. Pedosphere. 21 (2), 207, 2011.
  • 15. SAMEREH F., SEYED M.H., SHAMSOLLAH A., ABDOLRASSOUL S. Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Archives of Agronomy and Soil Science. 62 (3), 375, 2015.
  • 16. HE Y., WANG F., TIAN P., MU X.M., GAO P., ZHAO G.J., WU Y.P. Impact Assessment of Human Activities on Run-off and Sediment of Beiluo River in the Yellow River Based on Paired Years of Similar Climate. Pol. J. Environ. Stud. 25 (1), 126, 2016.
  • 17. LAL R. Soil erosion and the global carbon budget. Environ Int. 29, 437, 2003.
  • 18. LI Z.P., HAN F.X., SU Y., JOHN P. Assessment of soil organic and carbonate carbon storage in China. Geoderma. 138, 119, 2007.
  • 19. LIU Z.T., LIU C.Q., LANG Y.C., HU D. Dissolved organic carbon and its carbon isotope compositions in hill slope soils of the karst area of southwest China: Implications for carbon dynamics in limestone soil. Geochemical Journal. 48, 277, 2014.
  • 20. MAO D.H., WANG Z.M., Li L., MIAO Z.H., MA W.H., SONG C.C., REN C.Y., JIA M.M. Soil organic carbon in the Sanjiang Plain of China: storage, distribution and controlling factors. Biogeosciences. 12, 1635, 2015.
  • 21. QI Y.B., DARILEK J.L., HUANG B., ZHAO Y.C., SUN W., GU Z.Q. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma. 149, 325, 2009.
  • 22. TAHAR G.A., NADHEM B.B., MARTIAL B.C. Soil organic carbon density and storage in Tunisia. Global Soil Spatial Information Systems. 1, 2010.
  • 23. HEILMAN J.L., LITVAK M.E., KEVIN J.M., KJELGAARD J.F., KAMPS R.H., SCHWINNING S. Waterstorage capacity controls energy partitioning and water use in karst 470 ecosystems on the Edwards Plateau, Texas. Ecohydrology. 7, 127, 2014.
  • 24. LAL R. carbon sequestration impacts on global climate change and food security. Soil Sci. 304, 1623, 2004.
  • 25. LI Y.B., XIE J., LUO G.J., YANG H., WANG S.J. The evolution of a karst rocky desertification land ecosystem and its driving forces in the Houzhaihe area. Open J Ecol. 5, 501, 2015.
  • 26. SCHLESINGER WILLIAM H. Carbon storage in the caliches of arid soils a case study from Arizona. Soil Sci. 133, 247, 1982.
  • 27. WANG S.Q, LIU J.Y, YU G.R. Error analysis of estimating terrestrial soil organic carbon storage in China. China J Appl Ecol. 14, 797, 2003.(in Chinese)
  • 28. ZHUANG S., QIAN H., WANG F., JI H. Spatial variability of the topsoil organic carbon in the moso bamboo forests of southern China in association with soil properties. PLoS ONE. 10, 16, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d2255a08-14fb-4f88-b650-a9fbec154c0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.