PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 4 |

Tytuł artykułu

Attenuation of enoyl coenzyme A hydratase short chain 1 expression in gastric cancer cells inhibits cell proliferation and migration in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Enoyl coenzyme A hydratase short chain 1 (ECHS1) is an important part of the mitochondrial fatty acid β-oxidation pathway. Altered ECHS1 expression has been implicated in cancer cell proliferation. This study assessed ECHS1 expression in human gastric cancer cell lines and investigated the effects of ECHS1 knockdown on gastric cancer cell proliferation and migration. The human gastric cancer cell lines SGC-7901, BGC-823 and MKN-28, and the immortalized human gastric epithelial mucosa GES-1 cell line were analyzed for ECHS1 protein levels using western blot. The effectiveness of ECHS1-RNA interference was also determined using western blot. Proliferation and migration of the siECHS1 cells were respectively measured with the CCK-8 and transwell assays. Phosphorylation of PKB and GSK3β was assessed using western blot. ECHS1 protein levels were significantly higher in poorly differentiated cells than in well-differentiated cells and immortalized gastric epithelial mucosa cells. Stable expression of ECHS1 shRNA was associated with an over 41% reduction in the ECHS1 protein levels of siECHS1 cells. Constitutive knockdown of the ECHS1 gene in siECHS1 cells was associated with significantly inhibited cell proliferation and migration. We also observed decreased levels of PKB and GSK3β phosphorylation in siECHS1 cells. ECHS1 expression is increased in human gastric cancer cells. Increased ECHS1 expression activates PKB and GSK3β by inducing the phosphorylation of the two kinases. ECHS1 may play important roles in gastric cancer cell proliferation and migration through PKB- and GSK3β-related signaling pathways.

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.576-589,fig.,ref.

Twórcy

autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China
autor
  • Department of Gastroenterology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, 361003, China

Bibliografia

  • 1. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. and Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127 (2011) 2893–2917.
  • 2. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. Global cancer statistics. CA Cancer J. Clin. 61 (2011) 69–90.
  • 3. Guggenheim, D.E. and Shah, M.A. Gastric cancer epidemiology and risk factors. J. Surg. Oncol. 107 (2013) 230–236.
  • 4. Lim, S.M., Lim, J.Y. and Cho, J.Y. Targeted therapy in gastric cancer: Personalizing cancer treatment based on patient genome. World J. Gastroenterol. 20 (2014) 2042–2050.
  • 5. Cappetta, A., Lonardi, S., Pastorelli, D., Bergamo, F., Lombardi, G. and Zagonel, V. Advanced gastric cancer (GC) and cancer of the gastrooesophageal junction (GEJ): focus on targeted therapies. Crit. Rev. Oncol. Hematol. 81 (2012) 38–48.
  • 6. Vivanco, I. and Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2 (2002) 489–501.
  • 7. Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4 (2005) 988–1004.
  • 8. Nam, S.Y., Lee, H.S., Jung, G.A., Choi, J., Cho, S.J., Kim, M.K., Kim, W.H. and Lee, B.L. AKT/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis. APMIS (Acta Pathol. Microbiol. Immunol. Scand.) 111 (2003) 1105–1113.
  • 9. Xu, J., Xu, P.J., Li Z.G., Xiao, L. and Yang, Z. The role of glycogen synthase kinase 3β in gloma cell apoptosis induced by remifentanil. Cell. Mol. Biol. Lett. 18 (2013) 494–506.
  • 10. Kim, L. and Kimmel, A.R. GSK3, a master switch regul ating cell-fate specification and tumorigenesis. Curr. Opin. Genet. Dev. 10 (2000) 508–514.
  • 11. Liu, J., Zhang, Y., Xu, R., Du, J., Hu, Z., Yang, L., Chen, Y., Zhu, Y. and Gu, L. PI3K/AKT-dependent phosphorylation of GSK3 beta and activation of RhoA regulate Wnt5a-induced gastric cancer cell migration. Cell Signal. 25 (2013) 447–456.
  • 12. Zhang, Z., Miao, L., Wu, X., Liu, G., Peng, Y., Xin, X., Jiao, B. and Kong, X. Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signaling. J. Cancer 5 (2014) 382–389.
  • 13. Janssen, U., Davis, E.M., Le Beau, M.M. and Stoffel, W. Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. Genomics 40 (1997) 470–475.
  • 14. Liu, X., Feng, R. and Du, L. The role of enoyl-CoA hydratase short chain 1 and peroxiredoxin 3 in PP2-induced apoptosis in human breast cancer MCF-7 cells. FEBS Lett. 584 (2010) 3185–3192.
  • 15. Yeh, C.S., Wang, J.Y., Cheng, T.L., Juan, C.H., Wu, C.H. and Lin, S.R. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by microarray-bioinformatics analysis. Cancer Lett. 233 (2006) 297–308.
  • 16. Lin, J.F., Xu, J., Tian, H.Y., Gao, X., Chen, Q.X., Gu, Q., Xu, G.J., Song, J.D. and Zhao, F.K. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int. J. Cancer 121 (2007) 2596–2605.
  • 17. Hu, Y., Pang, E., Lai, P.B., Squire, J.A., MacGregor, P.F., Beheshti, B., Albert, M., Leung, T.W. and Wong, N. Genetic alterations in doxorubicinresistant hepatocellular carcinoma cells: a combined study of spectral karyotyping, positional expression profiling and candidate genes. Int. J. Oncol. 25 (2004) 1357–1364.
  • 18. Xiao, C.X., Yang, X.N., Huang, Q.W., Zhang, Y.Q., Lin, B.Y., Liu, J.J., Liu, Y.P., Jazag, A., Guleng, B. and Ren J.L. ECHS1 acts a s a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells. Cancer Lett. 330 (2013) 67–73.
  • 19. Zhu, X.S., Dai, Y.C., Chen, Z.X., Xie, J.P., Zeng, W., Lin, Y.Y. and Tan, Q.H. Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of AKT activity. Crit. Rev. Eukar. Gene Expr. 23 (2013) 275–282.
  • 20. Chang, Y., Wang, S.X., Wang, Y.B., Zhou, J., Li, W.H., Wang, N., Fang, D.F., Li, H.Y., Li, A.L., Zhang, X.M. and Zhang W.N. ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling. FEBS Lett. 587 (2013) 607–613.
  • 21. Vogt, P.K. and Hart, J.R. PI3K and STAT3: a new alliance. Cancer Discov. 1 (2011) 481–486.
  • 22. Hart, J.R., Liao, L., Yates, J.R. 3rd. and Vogt, P.K. Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc. Natl. Acad. Sci. USA 108 (2011) 13247–13252.
  • 23. Miyagishi, M. and Taira, K. Strategies for generation of an siRNA expression library directed against the human genome. Oligonucleotides 13 (2003) 325–333.
  • 24. Guo, Y., Kang, W., Lei, X., Li, Y., Xiang, A., Liu, Y., Zhao, J., Zhang, J. and Yan, Z. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions. BMC Genomics 13 (2012) 563.
  • 25. Gong, X., Zhu, Y., Dong, J., Chen, J., You, J., Zheng, Q., Rao, Z., Mao, Q. and Jiang, J. Small hepatitis B surface antigen interacts with and modulates enoyl-coenzyme A hydratase expression in hepatoma cells. Arch. Virol. 158 (2013) 1065–1070.
  • 26. Yokoyama, Y., Kuramitsu, Y., Takashima, M., Iizuka, N., Toda, T., Terai, S., Sakaida, I., Oka, M., Nakamura, K. and Okita, K. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 4 (2004) 2111–2116.
  • 27. Crous-Bou, M., Rennert, G., Salazar, R., Rodriguez-Moranta, F., Rennert, H.S., Lejbkowicz, F., Kopelovich, L., Lipkin, S.M., Gruber, S.B. and Moreno, V. Genetic polymorphisms in fatty acid metabolism genes and colorectal cancer. Mutagenesis 27 (2012) 169–176.
  • 28. Kurokawa, Y., Matoba, R., Takemasa, I., Nakamori, S., Tsujie, M., Nagano, H., Dono, K., Umeshita, K., Sakon, M., Ueno, N., Kita, H., Oba, S., Ishii, S., Kato, K. and Monden, M. Molecular features of non-B, non-C hepatocellular carcinoma: a PCR-array gene expression profiling study. J. Hepatol. 39 (2003) 1004–1012.
  • 29. Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (2009) 1029–1033.
  • 30. Kundu, J., Wahab, S.M., Kundu, J.K., Choi, Y.L., Erkin, O.C., Lee, H.S., Park, S.G. and Shin, Y.K. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting betacatenin signaling. Int. J. Oncol. 41 (2012) 839–848.
  • 31. Tang, X., Zheng, D., Hu, P., Zeng, Z., Li, M., Tucker, L., Monahan, R., Resnick, M.B., Liu, M. and Ramratnam, B. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the beta-catenin/TCF/LEF-1 pathway in gastric cancer cells. Nucleic Acids Res. 42 (2014) 2988–2998.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d2010fb8-72d3-49dc-b893-089b53e529e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.