PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 76 | 3 |

Tytuł artykułu

Foramen magnum, occipital condyles and hypoglossal canals morphometry: anatomical study with clinical implications

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Current study examines morphometric alterations of the foramen magnum (FM), occipital condyles (OCs) and hypoglossal canals (HCs) and highlights all the morphometric parameters of the FM area that present side asymmetry, gender dimorphism and are affected by the ageing. Materials and methods: One hundred and forty-one (73 male and 68 female) Greek adult dry skulls were examined. Results: Short and long OCs were detected in 27.7% and 26.2%. A combination of short OCs and long HCs was presented in 27.5%. A complete septum was found in 23.6% of the HCs and osseous spurs in 12.9%. Side asymmetry was detected regarding the HCs length (p = 0.046), the maximum extracranial (p = 0.001) and minimum intracranial (p = 0.001) diameters. Mean FM anteroposterior and transverse diameters, FM perimeter and FM surface area were significantly larger in male than in female skulls (p = 0.001 for each parameter). Similarly, the OCs length (right, p = 0.004 and left, p = 0.024) and width (right, p = 0.008 and left, p = 0.006) the left distance HC-OC posterior border (p = 0.048), the anterior (p = 0.011) and posterior (p = 0.001) intercondylar distances and the HCs right length (p = 0.046) were significantly greater in males. A significant decrease was observed with ageing in FM anteroposterior diameter (p = 0.038), FM surface area (p = 0.05), anterior intercondylar distance (p = 0.014) and HC-OC posterior border (p = 0.013). Conclusions: The study confirmed that only specific HC dimensions showed side asymmetry (HCs maximum extracranial and minimum intracranial diameters and HCs length), gender dimorphism (HCs right length and left distance HC-OC posterior border) and age influence (HC-OC posterior border and HC left extracranial minimum diameter) among young, adults and elderly individuals. FM and OCs dimensions presented gender dimorphism and the age influenced only FM anteroposterior diameter and surface area and the anterior intercondylar distance. The safe zone of OCs drilling in Greeks, calculated by the distance HC-OC posterior border represents the maximum HC depth and is among the lowest values reported in the literature. The significant decrease of this distance with ageing confirms the existence of a drilling safe zone for young, adults and elder individuals. Regarding OCs length, the same probability exists dealing with a short or a long OC during condylectomy. Before planning a transcondylar approach, the coexistence of short OCs and long HCs should be taken into account. These outcomes will be useful for a safe surgery in the craniocervical region in Greeks. (Folia Morphol. 2017; 76, 3: 446–457)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

76

Numer

3

Opis fizyczny

p.446-457,fig.,ref.

Twórcy

autor
  • Faculty of Health Sciences, Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Greece
autor
  • Faculty of Health Sciences, Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, Greece
autor
  • Faculty of Health Sciences, Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, Greece
  • Faculty of Health Sciences, Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Greece
  • Faculty of Health Sciences, Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Greece
autor
  • Faculty of Health Sciences, Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Greece

Bibliografia

  • 1. Abdel-Karim RI, Housseini AM, Hashisha RK. Adult sex estimation using Three-Dimensional Volume Rendering Multislice Computed Tomography of the foramen magnum and occipital condyles: A study in Egyptian population. IJAR. 2015; 3: 1212–1215.
  • 2. Avci E, Dagtekin A, Ozturk AH, et al. Anatomical variations of the foramen magnum, occipital condyle and jugular tubercle. Turk Neurosurg. 2011; 21(2): 181–190, doi: 10.5137/1019-5149.JTN.3838-10.1, indexed in Pubmed: 21534200.
  • 3. Barut N, Kale A, Turan Suslu H, et al. Evaluation of the bony landmarks in transcondylar approach. Br J Neurosurg. 2009; 23(3): 276–281, doi:10.1080/02688690902814725, indexed in Pubmed: 19533459.
  • 4. Boulton MR, Cusimano MD. Foramen magnum meningiomas: concepts, classifications, and nuances. Neurosurg Focus. 2003; 14(6): e10, indexed in Pubmed: 15669785.
  • 5. Canalis RF, Martin N, Black K, et al. Lateral approach to tumors of the craniovertebral junction. Laryngoscope. 1993; 103(3): 343–349, doi:10.1288/00005537-199303000-00019, indexed in Pubmed: 8441320.
  • 6. Catalina-Herrera CJ. Study of the anatomic metric values of the foramen magnum and its relation to sex. Acta Anat (Basel). 1987; 130(4): 344–347, indexed in Pubmed: 3434189.
  • 7. Chethan P, Prakash KG, Murlimanju BV, et al. Morphological analysis and morphometry of the foramen magnum: an anatomical investigation. Turk Neurosurg. 2012; 22(4): 416–419, doi: 10.5137/1019-5149.JTN.4297-11.1, indexed in Pubmed: 22843456.
  • 8. Cicekcibasi AE, Murshed KA, Ziylan T, et al. morphometric evaluation of some important boney landmarks on the skull base related to sexes. Turk J Med Sci. 2004; 34: 37–42.
  • 9. Corruccini RS. An examination of the meaning of cranial discrete traits for human skeletal biological studies. Am J Phys Anthropol. 1974; 40(3): 425–445, doi: 10.1002/ajpa.1330400315, indexed in Pubmed: 4826459.
  • 10. Dowd GC, Zeiller S, Awasthi D. Far lateral transcondylar approach: dimensional anatomy. Neurosurgery. 1999; 45(1): 95–100, indexed in Pubmed:10414571.
  • 11. Fetouh FA, Awadalla AM. Morphometric analysis of the occipital condyle and its surgical implications in transcondylar approach. The pan arab neurosurgery society. 2009. http://panarabjn. org/wp-content/uploads/2013/03 (about 15 p.).
  • 12. Gapert R, Black S, Last J. Sex determination from the occipital condyle: discriminant function analysis in an eighteenth and nineteenth century British sample. Am J Phys Anthropol. 2009; 138(4): 384–394, doi: 10.1002/ajpa.20946, indexed in Pubmed: 18924165.
  • 13. Gökce C, Cicekcibasi A, Yilmaz M, et al. The Morphometric Analysis of the Important Bone Structures on Skull Base in Living Individuals with Multidetector Computed Tomography. Int J. Morphol. 2014; 32(3): 812–821, doi: 10.4067/s0717-95022014000300012.
  • 14. Kalthur SG, Padmashali S, Gupta C, et al. Anatomic study of the occipital condyle and its surgical implications in transcondylar approach. J Craniovertebr Junction Spine. 2014; 5(2): 71–77, doi: 10.4103/0974-8237.139201, indexed in Pubmed: 25210336.
  • 15. Kaur J, Srivastava D, Singh D, et al. The study of hyperostosic variants: significance of hyperostotic variants of human skulls in anthropology. Anat Cell Biol. 2012; 45(4): 268–273, doi: 10.5115/acb.2012.45.4.268, indexed in Pubmed: 23301194.
  • 16. Kizilkanat E, Boyan N, Soames R, et al. Morphometry of the Hypoglossal Canal, Occipital Condyle, and Foramen Magnum. Neurosurgery Quarterly, James Cook University. 2006; 16(3): 121–125, doi: 10.1097/01.wnq.0000214018.49915.49.
  • 17. Liu J, Rao G, Schmidt M, et al. Far lateral transcondylar transtubercular approach to lesions of the ventral foramen magnum and craniovertebral junction. Contemp Neurosurg. 2007; 29(10): 1–7, doi: 10.1097/01.cne.0000268054.70330.62.
  • 18. Manoel C, Prado FB, Caria PHF, et al. Morphometric analysis of the foramen magnum in human skulls of Brazilian individuals: its relation to gender. Braz J Morphol Sci. 2009; 26: 104–108.
  • 19. Murshed KA, Çiçekcibași AE, Tuncer I. Morphometric evaluation of the foramen magnum and variations in its shape: A study on computerized tomographic images of normal adults. Turk J Med Sci. 2003; 33: 301–6.
  • 20. Muthukumar N, Swaminathan R, Venkatesh G, et al. A morphometric analysis of the foramen magnum region as it relates to the transcondylar approach. Acta Neurochir. 2005; 147(8): 889–895, doi: 10.1007/s00701-005-0555-x, indexed in Pubmed: 15924208.
  • 21. Naderi S, Korman E, Citak G, et al. Morphometric analysis of human occipital condyle. Clin Neurol Neurosurg. 2005; 107(3): 191–199, doi:10.1016/j.clineuro.2004.07.014, indexed in Pubmed: 15823674.
  • 22. Natsis K, Piagkou M, Skotsimara G, et al. A morphometric anatomical and comparative study of the foramen magnum region in a Greek population. Surg Radiol Anat. 2013; 35(10): 925–934, doi: 10.1007/s00276-013-1119-z, indexed in Pubmed: 23620089.
  • 23. Natsis K, Lyrtzis C, Totlis T, et al. A morphometric study of the atlas occipitalization and coexisted congenital anomalies of the vertebrae and posterior cranial fossa with neurological importance. Surg Radiol Anat. 2017; 39(1): 39–49, doi: 10.1007/s00276-016-1687-9, indexed in Pubmed: 27192980.
  • 24. Nicolaije C, Diderich KEM, Botter SM, et al. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice. PLoS One. 2012; 7(4): e35246, doi: 10.1371/journal.pone.0035246, indexed in Pubmed: 22506075.
  • 25. Nikumbh RD, Nikumbh DB, Karambelkar RR, et al. Morphological study of hypoglossal canal and its anatomical variation. Int J Health Sci Res. 2013; 3: 54–58.
  • 26. Osunwoke E, Oladipo G, Gwunireama IU, et al. Morphometric analysis of the foramen magnum and jugular foramen in adult skulls in southern Nigerian population. Am J Sci Indust Res. 2012; 3(6): 446–448, doi: 10.5251/ajsir.2012.3.6.446.448.
  • 27. Ozer MA, Celik S, Govsa F, et al. Anatomical determination of a safe entry point for occipital condyle screw using three-dimensional landmarks. Eur Spine J. 2011; 20(9): 1510–1517, doi: 10.1007/s00586-011-1765-y, indexed in Pubmed: 21416278.
  • 28. Parvindokht B, Bagheri M, Ghanbari A, et al. Characterization of occipital condyle and comparison of its dimensions with head and foramen magnum circumferences in dry skulls of iran. Int J Morphol. 2014; 32(2): 444–448, doi: 10.4067/s0717-95022014000200011.
  • 29. Parvindokht B, Reza DM, Saeid B. Morphometric analysis of hypoglossal canal of the occipital bone in Iranian dry skulls. J Craniovertebr Junction Spine. 2015; 6(3): 111–114, doi: 10.4103/0974-8237.161591, indexed in Pubmed: 26288545.
  • 30. Radhakrishna SK, Shivarama CH, Ramakrishna A, et al. Morphometric analysis of foramen magnum for sex determination in South Indian population. NUJHS. 2012; 2: 20–22.
  • 31. Reich JB, Sierra J, Camp W, et al. Magnetic resonance imaging measurements and clinical changes accompanying transtentorial and foramen magnum brain herniation. Ann Neurol. 1993; 33(2): 159–170, doi: 10.1002/ana.410330205, indexed in Pubmed: 8434877.
  • 32. Reina P, Cointry GR, Nocciolino L, et al. Analysis of the independent power of age-related, anthropometric and mechanical factors as determinants of the structure of radius and tibia in normal adults. A pQCT study. J Musculoskelet Neuronal Interact. 2015; 15(1): 10–22, indexed in Pubmed: 25730648.
  • 33. Scheuer L, Black S. Developmental juvenile osteology. Academic London. 2000.
  • 34. Shaikh VG, Kulkarni PRA. Morphological and morphometric study of foetal and adult, human foramen magnum in relation with age changes, sexual dimorphism and symmetry. Indian J Basic App Med Res. 2015; 4: 140–150.
  • 35. Sindel M, Özkan O, Uçar Y, et al. Foramen Magnum’un Anatomik Varyasyonlarý. Akdeniz Üniversitesi Týp Fakültesi Dergisi. 1989; 44: 97–102.
  • 36. Skrzat J, Brzegowy P, Walocha J, et al. Age dependent changes of the diploe in the human skull. Folia Morphol. 2004; 63(1): 67–70, indexed in Pubmed:15039903.
  • 37. Solan DS. Morphmetric analysis of foramen magnum and occipital condyles in human skull among eastern population: a case study. Indian J Applied Res. 2016(5).
  • 38. Uysal S, Gokharman D, Kacar M, et al. Estimation of sex by 3D CT measurements of the foramen magnum. J Forensic Sci. 2005; 50(6): 1310–1314, indexed in Pubmed: 16382824.
  • 39. Vogl C, Atchley WR, Cowley DE, et al. The epigenetic influence of growth hormone on skeletal development. Growth Dev Aging. 1993; 57(3): 163–182, indexed in Pubmed: 8244621.
  • 40. Wen HT, Rhoton AL, Katsuta T, et al. Microsurgical anatomy of the transcondylar, supracondylar, and paracondylar extensions of the far-lateral approach. J Neurosurg. 1997; 87(4): 555–585, doi: 10.3171/jns.1997.87.4.0555, indexed in Pubmed: 9322846.
  • 41. Wysocki J, Kobryń H, Bubrowski M, et al. The morphology of the hypoglossal canal and its size in relation to skull capacity in man and other mammal species. Folia Morphol. 2004; 63(1): 11–17, indexed in Pubmed: 15039894.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d1e08c72-195a-44ee-8fcd-147519da473a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.