PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

Purification and characterisation of monoamine oxidase from Avena sativa

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
FAD-containing monoamine oxidase (MAO; EC 1.4.3.4) oxidises monoamines to their corresponding aldehydes, H₂O₂, and NH₃. It has been purified to homogeneity in mammals, but to our knowledge, there have been no reports of the enzyme in plants. MAO activity was detected in Avena sativa seedlings during germination using benzylamine as substrate. The enzyme was purified to homogeneity (as assessed by native PAGE) by Sephadex G-25, DEAE Sephacel, hydroxyapatite, Mono Q, and TSK-GEL column chromatographies. The molecular mass estimated by gel filtration using the TSK-GEL column was 220 kDa. SDS-PAGE yielded four distinct protein bands of 78, 58, 55, and 32 kDa molecular masses. The pI value of the enzyme was 6.3. The enzyme showed high substrate specificity for an endogenous amine, phenethylamine, which was oxidised to phenylacetaldehde, but not for ethylamine, propylamine, butylamine, pentylamine, dopamine, serotonin, tryptamine, or tyramine. The Km values for benzylamine and phenethylamine were 2.7 9 10⁻⁴ and 7.1 9 10⁻⁴ M, respectively. Enzyme activity was not inhibited by pargyline, clorgyline, semicarbazide, or Na-diethyldithiocarbamate. Benzaldehyde, the product of benzylamine oxidation, exhibited strong competitive inhibition of enzyme activity with a Ki of 3 µM. FAD was identified by ODS-column chromatography as an enzyme cofactor. The enzyme contained 2 mol of FAD per 220,000 g of enzyme.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1411-1419,fig.,ref.

Twórcy

autor
  • Department of Bio-GeoSciences, Osaka City University, 558-8585 Osaka, Japan
  • College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010011, Inner Mongolia, China
  • Department of Bio-GeoSciences, Osaka City University, 558-8585 Osaka, Japan
autor
  • Department of Bio-GeoSciences, Osaka City University, 558-8585 Osaka, Japan

Bibliografia

  • Agostinelli E, Arancia G, Dalla L, Belli VF, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases. Perspectives of clinical applications. Amino Acids 27:347–358
  • Awal HMA, Hirasawa EJ (1995) Diamine oxidase from millet catalyzes the oxidation of 1, 3-diaminopropane. J Plant Res 108:395–397
  • Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A (1999) A 30-angstrom-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure Fold Des 7:265–276
  • Binda C, Mattevi A, Edmondson DE (2002) Structure-function relationships in flavoenzyme-dependent amine oxidations. A comparison of polyamine oxidase and monoamine oxidase. J Biol Chem 277:23973–23976
  • Bouchereau A, Guénot P, Larher F (2000) Analysis of amines in plant materials. J Chromatography B 747:49–67
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biol Chem 72:248–254
  • Clark GS (1990) Phenylethyl alcohol. Perfumer Flavorist 15:37–44
  • Dailey TA, Dailey HA (1998) Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases and phytoene desaturase. J Biol Chem 273:13658–13662
  • Davis BJ (1964) Disc electrophoresis. II. Methods and application to human serum proteins. Annu N Y Acad Sci 121:404–427
  • Denney RM, Fritz RR, Patel N, Abell CW (1982) Human liver MAOA and MAO-B separated by immunoaffinity chromatography with MAO-B-specific monoclonal antibody. Science 215:1400–1403
  • Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog 14:270–274
  • Furia TE, Bellanca N, Fenaroli’s (1971) Handbook of flavor ingredients. CRC Press, Cleveland
  • Geha RM, Chen K, Wouters J, Ooms F, Shih JC (2002) Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J Biol Chem 277:17209–17216
  • Gomes B, Igaue I, Kloepfer HG, Yasunobu KT (1969) Amine oxidase XIV. Isolation and characterization of the multiple beef liver amine oxidase components. Arch Biochem Biophys 132:16–27
  • Greenawalt JW, Schnaitman C (1970) An appraisal of use of monoamine oxidase as an enzyme marker for outer membrane of rat liver mitochondria. J Cell Biol 46:173–179
  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275
  • Grosse W (1982) Function of serotonin in seeds of walnuts. Phytochemistry 21:819–822
  • Heldt H-W (2011) Plant Biochemistry. Academic Press, New York
  • Hirasawa EJ, Livingstone JR, Yoshida I, Tarui Y (2003) Purification and properties of monoamine oxidase from Avena sativa. J Plant Res 116(Supplement):118
  • Kuwahara T, Takamoto S, Ito A (1990) Primary structure of rat monoamine oxidase a deduced from cDNA and its expression in rat tissues. Agri Biol Chem 54:253–257
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • McGowan RE, Muir RM (1971) Purification and properties of amine oxidase from epicotyls of Pisum sativum. Plant Physiol 47:644–648
  • Muhtasib H, Evans DL (1987) Linamarin and histamine in the defense of adult Zygaena filipendulae. J Chem Ecol 13:133–142
  • Nara S, Igaue I, Gomes B, Yasunobu KT (1966) The prosthetic groups of animal amine oxidases. Biochem Biophys Res Commun 23:324–328
  • Odjakova M, Hadjiivanova C (1997) Animal neurotransmitter substances in plants. Bulg J Plant Physiol 23:94–102
  • Percival FW, Purves WK (1974) Multiple amine oxidases in cucumber seedlings. Plant Physiol 54:601–607
  • Schilling B, Lerch K (1995) Amine oxidases from Aspergillus niger; identification of a novel flavin-dependent enzyme. Biochem Biophy Acta 1243:529–537
  • Šebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Peč (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207
  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233
  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from gene to behaviors. Annu Rev Neurosci 22:197–217
  • Smith TA (1977) Recent advances in the biochemistry of plant amines. In: Reinhold L, Harbone JB, Swain T (eds) Progress in Phytochemistry. Pergamon Press, Oxford, pp 27–82
  • Smith TA (1980) Plant amines. Secondary plant products. In: Bell IA, Charlwood BV (ed.) Encyclopedia of Plant Physiology New Series, vol 8. Springer, Berlin, pp 433–460
  • Suzuki Y, Hirasawa E, Yanagisawa H, Matsuda H (1990) The enzymes of polyamine metabolism in higher plants. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene; biochemistry, physiology and interaction. American Society of Plant Physiologists, Rockville, pp 73–90
  • Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. PANS 103:8287–8292
  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57:33–73
  • Tsugeno Y, Ito A (1997) A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J Biol Chem 272:14033–14036
  • Tsushida T, Takeo T (1985) Purification and some properties of tea leaf amine oxidase. Agric Biol Chem 49:319–326
  • Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J 36:215–228
  • Walsch C (1978) Amine oxidase, Chap 14. A. 1. In: Enzymatic reaction mechanisms. W.H. Freeman, NY, pp 451–454
  • Welsh FW, Murray WD, Williams RE (1989) Microbiological and enzymatic production of flavor and fragrance chemicals. Crit Rev Biotechnol 8:105–169
  • Weyler W, Salach JI (1985) Purification and properties of mitochondrial monoamine oxidase type A from human placenta. J Biol Chem 260:13199–13207
  • Wink M, Hartmann T (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol 70:74–77
  • Zhou BP, Lewis DA, Kwan SW, Abell CW (1995) Flavinylation of monoamine oxidase B. J Biol Chem 270:23653–23660
  • Zhu J, Obrycki J, Ochieng S, Baker T, Pickett J, Smiley D (2005) Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92:277–281

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d1a03123-2931-4df8-9172-373d6186f81a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.