PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 01 |

Tytuł artykułu

Genetic diversity revealed by physiological behavior of citrus genotypes subjected to salt stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Different physiological behavior of a wide range of varieties and species belonging to the Citrus genus was analyzed when subjected to salt stress with the aim to seek new sources of tolerance that might be specie-specific. Our goal was to use physiological results obtained along a salt stress in order to clarify if it would be possible to associate them with the known citrus genetic diversity. For that purpose, we have selected 20 different genotypes representing the major species on the basis of the genetic diversity of Citrus genus complemented with one intergeneric hybrid Carrizo citrange (C. sinensis 9 P. trifoliata). A moderate salt stress of 75 mM of NaCl was applied for 12 weeks. For control plants, the main parameters contributing for more than 25 %to the diversity on the two axes of principal component analysis (PCA) were chlorophyll content, photosynthesis and Fv/Fm under light. However, the dispersal of species and varieties on the PCA did not show any particular structure. Under salt stress condition, four parameters (leaf chloride content, leaf chlorophyll content, photosynthesis and stomatal conductance) contributed more specifically to the dispersion on PCA representation with more than 15 % of contribution for each parameter. Large differences were observed within citrus genus: mandarin and pummelo presented good tolerance to salt stress while citron was very sensitive. Furthermore, all secondary genotypes that presented good tolerance to salt tolerance shared mandarin or pummelo as female parent.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

01

Opis fizyczny

Article: 1740 [10 p.], fig.,ref.

Twórcy

autor
  • Unite de Recherche 1103 Genetique et Ecophysiologie de la Qualite des Agrumes, INRA. Centre INRA de Corse, 20230 San Giuliano, France
  • Equipe Amelioration des Plantes a Multiplication Vegetative, Unite Mixte de Recherche Amelioration Genetique et Adaptation des Plantes, CIRAD, Instituto Valenciaino de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
  • Department of Horticulture. Bahauddln Zakariya University. Multan 60000, Pakistan
autor
  • Equipe Amelioration des Plantes a Multiplication Vegetative, Unite Mixte de Recherche Amelioration Genetique et Adaptation des Plantes, CIRAD, Instituto Valenciaino de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
autor
  • Department of Horticulture. Bahauddln Zakariya University. Multan 60000, Pakistan
  • Equipe Amelioration des Plantes a Multiplication Vegetative, Unite Mixte de Recherche Amelioration Genetique et Adaptation des Plantes, CIRAD, Instituto Valenciaino de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
  • Unite de Recherche 1103 Genetique et Ecophysiologie de la Qualite des Agrumes, INRA. Centre INRA de Corse, 20230 San Giuliano, France
autor
  • Unite de Recherche 1103 Genetique et Ecophysiologie de la Qualite des Agrumes, INRA. Centre INRA de Corse, 20230 San Giuliano, France

Bibliografia

  • Addabbo F, Montagnani M, Goligorsky M (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892
  • Anjum MA (2008) Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiol Plant 30:43–52. doi:10.1007/s11738-007-0089-3
  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391
  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16
  • Atmane R, El-Yacoubi H, Abdellatif R (2003) Responses to NaCl stress of Citrus aurantium, Citrange troyer and Poncirus trifoliata in callus cultures: assessment of characters for evaluating salt stress responses in citrus rootstocks. Agronomie 23:643–649
  • Banuls J, Serna MD, Legaz F, Talon M, PrimoMillo E (1997) Growth and gas exchange parameters of citrus plants stressed with different salts. J Plant Physiol 150:194–199
  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531
  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and it close relatives. Syst Bot 1:105–136
  • Byrt CS, Munns R (2008) Living with salinity. New Phytol 179: 903–905
  • Cabasson CM, Luro F, Ollitrault P, Grosser JW (2001) Non-random inheritance of mitochondrial genomes in Citrus hybrids produced by protoplast fusion. Plant Cell Rep 20:604–609
  • Cooper W (1961) Toxicity and accumulation of salts in citrus trees on various rootstocks in Texas. Proc Fla State Hort Soc 74:95–104
  • Corazza-Nunes M, Machado M, Nunes W, Cristofani M, Targon M (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176
  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
  • Fang D, Roose M (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417
  • Fang D, Krueger R, Roose M (1998) Phylogenetic relationships among selected Citrus germplasm accessions revealed by intersimple sequence repeat (ISSR) markers. Am Soc Hortic Sci (USA) 123(4):612–617
  • Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822. doi:10.1007/s001220050807
  • FroelicherY et al (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944. doi:10.1007/s00299-007-0314-y
  • Froelicher Y et al (2010) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genomes:1–13
  • Garcia-Sanchez F, Syvertsen JP (2009) Substrate type and salinity affect growth allocation, tissue ion concentrations, and physiological responses of Carrizo citrange seedlings. HortScience 44:1432–1437
  • García-Sánchez F, Syvertsen J (2006) Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedlings is affected by CO2 enrichment during growth. J Am Soc Hortic Sci 131:24–31
  • Green R, Vardi A, Galun E (1986) The plastome of citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177
  • Grosser JW, Chandler JL, Duncan LW (2007) Production of mandarin+pummelo somatic hybrid citrus rootstocks with potential for improved tolerance/resistance to sting nematode. Sci Hortic 113:33–36
  • Herrero R, Ası´ns M, Pina J, Carbonell E, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Genet 93:1327–1334. doi:10.1007/bf00223466
  • Hussain S, Luro F, Costantino G, Ollitrault P, Morillon R (2012) Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance. S Afr J Bot 81:103–112
  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9:6595–6604. doi:10. 1021/pr1007834
  • Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184. doi:10.1016/j.envexpbot.2007.08.002
  • Luro F, Rist D, Ollitrault P (2001a) Evaluation of genetic relationships in Citrus genus by means of sequence tagged microsatellites. Acta Hortic 546:237–242
  • Luro F, Rist D, Ollitrault P (2001b) Evaluation of genetic relationships in citrus genus by means of sequence tagged microsatellites. In: Dore C, Dosba F, Baril C (eds) Proceedings of the International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture. Acta Horticulturae. International Society Horticultural Science, Leuven 1, pp 237–242
  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216
  • Masashi Yamamoto S (1993) Phylogenic relationships of citrus revealed by RFLP analysis of mitochondrial and chloroplast DNA. Jpn J Breed 43:355–365
  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19
  • Mouhaya W et al (2010a) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37:674–685. doi:10.1071/fp10035
  • Mouhaya W et al (2010b) Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37:674–685
  • Moya JL, Tadeo FR, Gomez-Cadenas A, Primo-Millo E, Talon M (2002) Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. J Plant Physiol 159:991–998
  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166
  • Ollitrault P, Dambier D, Froelicher Y, Bakry F, Aubert B (1998) Rootstock breeding strategies for the Mediterranean citrus industry; the somatic hybridization potential. Fruits (Paris) 53:335–344
  • Ollitrault P et al (2000) Somatic hybridisation potential for Citrus germplasm utilization. Cah Agric 9:223–236
  • Ollitrault P, Guo W, Grosser JW (2007) Somatic hybridization. In: Citrus genetics, breeding and biotechnology, pp 235–260
  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323
  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biol 331:703–710. doi:10.1016/j.crvi.2008.06.007
  • Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:269–375
  • Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SDS (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485
  • Syvertsen JP, Garcia-Sanchez F (2014) Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103:128–137. doi:10.1016/j.envexpbot.2013.09.015
  • Syvertsen JP, Melgar JC, Garcı´a-Sa´nchez F (2010) Salinity tolerance and leaf water use efficiency in citrus. J Am Soc Hortic Sci 135:33–39
  • Walker RR (1986) Sodium exclusion and potassium-sodium selectivity in salt-treated trifoliate orange (Poncirus trifoliata) and Cleopatra mandarin (Citrus reticulata) plants. Aust J Plant Physiol 13:293–303
  • Walker RR, Douglas TJ (1983) Effect of salinity level on uptake and distribution of chloride, sodium and potassium-ions in citrus plants. Aust J Agric Res 34:145–153

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d19c93bb-1f51-4ba3-b5cc-0b3241f4b12d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.