PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 10 |
Tytuł artykułu

Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recretohalophytes with specialized salt-secreting structures, including salt glands and salt bladders, can secrete excess salts from plant tissues and enhance salinity tolerance of plants. However, the pathway and property of salt secretion by the salt gland has not been elucidated. In the article, Limonium bicolor Kuntze was used to investigate the pathway and characteristics of salt secretion of salt gland. Scanning electron microscope micrographs showed that each of the secretory cells had a pore in the center of the cuticle, and the rice grain-like secretions were observed above the pore. The chemical composition of secretions from secretory pores was mainly NaCl using environmental scanning electron microscope technique. Non-invasive micro-test technology was used to directly measure ion secretion rate of salt gland, and secretion rates of Na⁺ and Cl⁻ were greatly enhanced by a 200-mmol/L NaCl treatment. However, epidermal cells and stoma showed little secretion of ions. In conclusion, our results provide evidence that the salt glands of L. bicolor have four secretory pores and that NaCl is secreted through these pores of salt gland.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
10
Opis fizyczny
p.2729-2741,fig.,ref.
Twórcy
autor
  • Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
autor
  • Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
autor
  • Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
autor
  • National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, China
  • Center for Bio-imaging, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, 100101, China
autor
  • National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, China
  • Center for Bio-imaging, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, 100101, China
autor
  • Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
Bibliografia
  • Arisz WH, Camphuis IJ, Heikens H, van Tooren AJ (1955) The secretion of the salt glands of Limonium latifolium Ktze. Acta Bot Neerl 4:322–338
  • Balsamo RA, Adams ME, Thomson WW (1995) Electrophysiology of the salt glands of Avicennia germinans. Int J Plant Sci 156:658–667
  • Barhoumi Z, Djebali W, Smaoui A, Chaıbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164:842–850
  • Berry WL (1970) Characteristics of salts secreted by Tamarix aphylla. Am J Bot 57:1226–1230
  • Bosabalidis AM (2012) Programmed cell death in salt glands of Tamarix aphylla L.: an electron microscope analysis. Cent Eur J Biol 7:927–930
  • Bradley PM, Morris JT (1991) Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. J Exp Bot 42:1525–1532
  • Breckle SW (1995) How do halophytes overcome salinity. In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. Book Crafters, Chelsea, pp 199–213
  • Campbell CJ, Strong JE (1964) Salt gland anatomy in Tamarix pentandra (Tamaricaceae). Southwest Nat 9:232–238
  • Campbell N, Thomson WW (1975) Chloride localization in the leaf of Tamarix. Protoplasma 83:1–14
  • Carter JM, Nippert JB (2011) Physiological responses of Tamarix ramosissima to extreme NaCl concentrations. Am J Plant Sci 2:808–815
  • Chen J, Xiao Q, Wu F, Dong XJ, He JX, Pei ZM, Zheng HL (2010) Nitric oxide enhances salt secretion and Na⁺ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H⁺-ATPase and Na⁺/H⁺ antiporter under high salinity. Tree Physiol 30:1570–1585
  • Dang JMC, Copeland L (2004) Studies of the fracture surface of rice grains using environmental scanning electron microscopy. J Sci Food Agr 84:707–713
  • Danilatos GD (1981) The examination of fresh or living plant material in an environmental scanning electron microscope. J Microsc 121:235–238
  • Danilatos GD (1990) Mechanisms of detection and imaging in the ESEM. J Microsc 160:9–19
  • Ding F, Song J, Ruan Y, Wang BS (2009) Comparison of the effects of NaCl and KCl at the roots on seedling growth, cell death and the size, frequency and secretion rate of salt glands in leaves of Limonium sinense. Acta Physiol Plant 31:343–350
  • Ding F, Yang JC, Yuan F, Wang BS (2010) Progress in mechanism of salt excretion in recretohalophytes. Front Biol 5:164–170
  • Dschida WJ, Platt-Aloia KA, Thomson WW (1992) Epidermal peels of Avicennia germinans (L.) Stearn: a useful system to study the function of salt glands. Ann Bot 70:501–509
  • Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75
  • Faraday CD, Thomson WW (1986a) Structural aspects of the salt glands of the Plumbaginaceae. J Exp Bot 37:461–470
  • Faraday CD, Thomson WW (1986b) Functional aspects of the salt glands of the Plumbaginaceae. J Exp Bot 37:1129–1135
  • Faraday CD, Quinton PM, Thomson WW (1986) Ion fluxes across the transfusion zone of secreting Limonium salt glands determined from secretion rates, transfusion zone areas and plasmodesmatal frequencies. J Exp Bot 37:482–494
  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963
  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612
  • Hill AE, Hill BS (1973) The electrogenic chloride pump of the Limonium salt gland. J Membrane Biol 12:129–144
  • Jin YJ, Dai ZY, Liu F, Kim H, Tong MP, Hou YL (2013) Bactericidal mechanisms of Ag₂O/TNBs under both dark and light conditions. Water Res 47:1837–1847
  • Kingsbury RW, Epstein E (1986) Salt sensitivity in wheat a case for specific ion toxicity. Plant Physiol 80:651–654
  • Kong XQ, Luo Z, Dong HZ, Eneji AE, Li WJ (2012) Effects of non-uniform root zone salinity on water use, Na⁺ recirculation, and Na⁺ and H⁺ flux in cotton. J Exp Bot 63:2105–2116
  • Levering CA, Thomson WW (1971) The ultrastructure of the salt gland of Spartina foliosa. Planta 97:183–196
  • Li N, Li YD, Wang YB, Li M, Cheng Y, Wu YH, Zheng YF (2013) Corrosion resistance and cytotoxicity of a MgF₂ coating on biomedical Mg-1Ca alloy via vacuum evaporation deposition method. Surf Interface Anal 45:1217–1222
  • Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of the Gramineae. New Phytol 73:507–513
  • Lu AH, Li Y, Wang X, Ding HR, Zeng CP, Yang XX, Hao RX, Wang CQ, Santosh M (2013) Photoelectrons from minerals and microbial world: a perspective on life evolution in the early Earth. Precambrian Res 231:401–408
  • Lüttge U (1971) Structure and function of plant glands. Annu Rev Plant Physiol 22:23–44
  • Ma HY, Tian CY, Feng G, Yuan JF (2011) Ability of multicellular salt glands in Tamarix species to secrete Na⁺ and K⁺ selectively. Sci China Life Sci 54:282–289
  • Manero JM, Gil FJ, Padros E, Planell JA (2003) Applications of environmental scanning electron microscopy (ESEM) in biomaterials field. Microsc Res Techniq 61:469–480
  • Mello PA, Barin JS, Duarte FA, Bizzi CA, Diehl LO, Muller EI, Flores EMM (2013) Analytical methods for the determination of halogens in bioanalytical sciences: a review. Anal Bioanal Chem 405:7615–7642
  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Oross JW, Thomson WW (1982) The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). Am J Bot 69:939–949
  • Ramadan T, Flowers TJ (2004) Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta 219:639–648
  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480
  • Rozema J, Gude H, Pollak G (1981) An ecophysiological study of the salt secretion of four halophytes. New Phytol 89:201–217
  • Ruhland W (1915) Untersuchungen über die Hautdrüsen der Plumbaginaceen. Ein Beitrag zur Biologie der Halophyten. Jb Wiss Bot 55:409–498
  • Semenova GA, Fomina IR, Biel KY (2010) Structural features of the salt glands of the leaf of Distichlis spicata ‘Yensen 4a’ (Poaceae). Protoplasma 240:75–82
  • Shimony C, Fahn A, Reinhold L (1973) Ultrastructure and ion gradients in the salt glands of Avicennia marina (Forssk.) Vierh. New Phytol 72:27–36
  • Skelding AD, Winterbotham J (1939) The structure and development of the hydathodes of Spartina townsendii Groves. New Phytol 38:69–79
  • Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870–879
  • Somaru R, Naidoo Y, Naidoo G (2002) Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora 197:67–75
  • Suárez N, Medina E (2008) Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans (L.) L. Braz J Plant Physiol 20:131–140
  • Sun J, Zhang CL, Deng SR, Lu CF, Shen X, Zhou XY, Zheng XJ, Hu ZM, Chen SL (2012) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant, Cell Environ 35:893–916
  • Tan WK, Lin Q, Lim TM, Kumar P, Loh CS (2013) Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. Plant, Cell Environ 36:1410–1422
  • Tarchoune I, Degl'Innocenti E, Kaddour R, Guidi L, Lachaal M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na₂SO₄ salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34:607–615
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Thomson WW, Liu LL (1967) Ultrastructural features of the salt gland of Tamarix aphylla L. Planta 73:201–220
  • Thomson WW, Berry WL, Liu LL (1969) Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc Nat Acad Sci 63:310–317
  • Tyerman SD (2013) The devil in the detail of secretions. Plant, Cell Environ 36:1407–1409
  • Waisel Y (1961) Ecological studies on Tamarix aphylla (L.) Karst. Plant Soil 13:356–364
  • Wieneke J, Sarwar G, Roeb M (1987) Existence of salt glands on leaves of kallar grass (Leptochloa fusca L. Kunth.). J Plant Nutr 10:805–819
  • Wilkinson RE (1966) Seasonal development of anatomical structures of saltcedar foliage. Bot Gaz 127:231–234
  • William SS (1974) Scanning electron microscopy and energy dispersive X-ray analysis of chalk secreting leaf glands of Plumbago Capensis. Am J Bot 61:94–99
  • Yang YQ, Qin YX, Xie CG, Zhao FY, Zhao JF, Liu DF, Chen SY, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y (2010) The Arabidopsis chaperone J3 regulates the plasma membrane H⁺-ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313–1332
  • Zhou LZ, Li S, Feng QN, Zhang YL, Zhao XY, Zeng YL, Wang H, Jiang LW, Zhang Y (2013) PROTEIN S-ACYL TRANSFERASE10 is critical for development and salt tolerance in Arabidopsis. Plant Cell 25:1093–1107
  • Ziegler H, Lüttge U (1966) Die Salzdrüsen von Limonium vulgare. Planta 70:193–206
  • Ziegler H, Lüttge U (1967) Die Salzdrüsen von Limonium vulgare. Planta 74:1–17
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d18c6328-ef68-4185-9c6d-c6ff408b3cc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.