PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 71 | 2 |

Tytuł artykułu

Gestational diabetes induced neuronal loss in CA1 and CA3 subfields of rat hippocampus in early postnatal life

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was conducted to determine the effect of gestational diabetes on the neuronal density of CA1 and CA3 subfields of the hippocampus in Wistar rat offspring. On day 1 of gestation, 10 dams were randomly allocated into two control and diabetic groups. Five animals in the diabetic group received 40 mg/kg/b.w. of streptozotocin (intraperitoneally) and the control animals were received normal saline. Six offspring of each of the gestational diabetics and controls were randomly selected in postnatal days 7 and 21. The infants were scarified and coronal sections were taken from the right dorsal hippocampus and stained with cresyl violet. The number of pyramidal cells per 10000 μm² area and the thickness of layers of hippocampus in CA1 and CA3 were evaluated. In postnatal day 7, the number of pyramidal neurons in CA1 significantly reduced from 118.82 ± 8.0 in the control group to 84.71 ± 3.3 neurons in gestational diabetic group, and in postnatal day 21 it significantly reduced from 112.71 ± 6.9 in the control group to 91.52 ± 8.5 in the gestational diabetic group. Also, the number of pyramidal cells of CA3 on postnatal day 7 significantly reduced from 90.33 ± 8.1 in the control group to 62.86 ± 7.2 in the gestational diabetic group, and in P21 the number of pyramidal cells significantly reduced from 78.33 ± 2.4 in the control group to 61.7 ± 9.5 cells in the diabetic group. In CA1 and CA3 the thickness of the pyramidal layer on postnatal days 7 and 21 non-significantly increased in gestational diabetics in comparison with the controls. This study showed that uncontrolled gestational diabetes reduces the pyramidal neurons of the hippocampus in rat offspring. (Folia Morphol 2012; 71, 2: 71–77)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

71

Numer

2

Opis fizyczny

p.71-77,fig.,ref.

Twórcy

  • Gorgan Congenital Malformations Research Centre, Department of Anatomical Sciences, Golestan University of Medical Sciences, P.O. Box: 49175-1141, Gorgan, Iran
  • Histology Laboratory, Golestan University of Medical Sciences, Gorgan, Iran
autor
  • Department of Anatomical Sciences, Golestan University of Medical Sciences, Gorgan, Iran

Bibliografia

  • 1. Ahmadpour SH, Haghir H (2011) Diabetes mellitus type 1 induces dark neuron formation in the dentate gyrus: a study by Gallyas’ method and transmission electron microscopy. Rom J Morphol Embryol, 52: 575–579.
  • 2. Ahmadpour SH, Sadeghi Y, Haghir H (2010) Streptozotocin induced hyperglycemia produces dark neuron in CA3 region of hippocampus in rats. Asian J Med Sci, 2: 11–15.
  • 3. Ahmadpour SH, Sadeghi Y, Hami J, Haghir H (2008) Effect of insulin and ascorbic acid therapy on plasma Cu level in stereptozotocin-induced diabetic rats. J Birjand Univ Med Sci, 15: 26–32.
  • 4. Allen DA, Yaqoob MM, Harwood SM (2005) Mechanisms of high glucose induced apoptosis and its relationship to diabetic complications. J Nutr Biochem, 16: 705–713.
  • 5. Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, Srinivasan S (2006) GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest, 116: 344–356.
  • 6. Arroba AI, Frago LM, Argente J, Chowen JA (2005) Activation of caspase 8 in the pituitaries of streptozotocin-induced diabetic rats: implication in increased apoptosis of lactotrophs. Endocrinology, 146: 4417–4424.
  • 7. Arroba AI, Frago LM, Paneda C, Argente J, Chowen JA (2003) The number of lactotrophs is reduced in the anterior pituitary of streptozotocin-induced diabetic rats. Diabetologia, 465: 634–638.
  • 8. Arroba AI, Lechuga-Sancho AM, Frago LM, Argente J, Chowen JA (2007) Cell specific expression of X-linked inhibitor of apoptosis in the anterior pituitary of streptozotocin-induced diabetic rats. J Endocrinol, 192: 215–227.
  • 9. Artola A (2008) Diabetes, stress and ageing-related changes in synaptic plasticity in hippocampus and neocortex the same metaplastic process? Eur J Pharmacol, 585: 153–162.
  • 10. Beauquis J, Roig P, Homo-Delarche F, De Nicola A, Saravia F (2006) Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur J Neurosci, 23: 1539–1546.
  • 11. Bestetti G, Rossi GL (1980) Hypothalamic lesions in rats with long-term streptozotocin-induced diabetes mellitus. Acta Neuropathol, 52: 119–127.
  • 12. Biessels GJ, Heide LPV, Kamal A, Bleys RLAW, Gispen WH (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol, 441: 1–14.
  • 13. Candy SM, Szatkowski MS (2000) Neuronal excitability and conduction velocity changes in hippocampal slices from streptozotocin-treated diabetic rats. Brain Res, 863: 298–301.
  • 14. Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61: 203–209.
  • 15. Chabot CH, Massicotte G, Milot M, Trudeau F, Gagne J (1997) Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res, 768: 249–256.
  • 16. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science, 296: 1634–1635.
  • 17. DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA (2005) Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol, 47: 525–531.
  • 18. Dheen ST, Tay SSW, Wong WC (1994) Arginine vasopressin and oxytocin-like immunoreactive neurons in the hypothalamic paraventricular and supraoptic nuclei of streptozotocin-induced diabetic rats. Arch Histol Cytol, 57: 461–472.
  • 19. Di Luca M, Ruts L, Gardoni F, Cattabeni F, Biessels GJ, Gispen WH (1999) NMDA receptor subunits are modified transcriptionally and posttranslationally in the brain of streptozotocin diabetic rats. Diabetologia, 42: 693–701.
  • 20. Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes, 39: 1391–1398.
  • 21. Franceschi M, Cecchetto R, Minicucci S, Smizne G, Baio G, Canal N (1984) Cognitive processes in insulin-dependent diabetes. Diabetes Care, 7: 228–231.
  • 22. Gardoni F, Kamal A, Bellone C, Biessels GJ, Ramakers GMJ, Cattabeni F, Gispen WH, Di Luca M (2002) Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. J Neurochem, 80: 438–447.
  • 23. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23: 542–549.
  • 24. Gould E, Tanapat P, Rydel T, Hastings N (2000) Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry, 48: 715–720.
  • 25. Gould E, Gross CG (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci, 22: 619–623.
  • 26. Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience, 80: 427–436.
  • 27. Grillo CA, Piroli GG, Wood GE, Rezinkov LR, McEwen BS, Reagan LP (2005) Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience, 136: 477–486.
  • 28. Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta, 1504: 196–219.
  • 29. Holmes CS, Richman LC (1985) Cognitive profiles of children with insulin dependent diabetes. J Dev Behav Pediatr, 6: 323–326.
  • 30. Holscher C (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci, 20: 298–303.
  • 31. Ishii DN (1995) Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy. Brain Res Rev, 20: 47–67.
  • 32. Ishizuka T, Klepcyk P, Liu S, Panko L, Liu Sh, Gibbs EM, Friedman JE (1999) Effects of over expression of human GLUT4 gene on maternal diabetes and fetal growth in spontaneous gestational diabetic. C57BLKS/JLeprdb/+ Mice. Diabetes, 48: 1061–1069.
  • 33. Jackson-Guilford J, Leander JD, Nisenbaum LK (2000) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett, 293: 91–94.
  • 34. Kamal A, Biessels GJ, Urban IJ, Gispen WH (1999) Hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Neuroscience, 90: 737–745.
  • 35. Khaksar Z, Jelodar Gh, Hematian H (2011) Cerebrum malformation in offspring of diabetic mothers. Comp Clin Pathol, DOI 10.1007/s00580-010-1160-9.
  • 36. Klein JP, Waxman SG (2003) The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurology, 2: 548–554.
  • 37. Klein JP, Hains BC, Craner MJ, Black JA, Waxman SG (2004) Apoptosis of vasopressinergic hypothalamic neurons in chronic diabetes mellitus. Neurobiol Dis, 15: 221–228.
  • 38. Lechuga-Sancho AM, Arroba AI, Frago LM, Garcia-Caceres C, Delgado Rubin de Celix A, Argente J, Chowen JA (2006a) Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology, 147: 5314–5324.
  • 39. Lechuga-Sancho AM, Arroba AI, Frago LM, Paneda C, Garcia-Caceres C, Delgado Rubin de Celix A, Argente J, Chowen JA (2006b) Activation of the intrinsic cell death pathway, increased apoptosis and modulation of astrocytes in the cerebellum of diabetic rats. Neurobiol Dis, 23: 290–299.
  • 40. Li ZG, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res, 946: 221–231.
  • 41. Magarinos AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA, 97: 11056– 11061.
  • 42. McCall AL (1992) The impact of diabetes on the CNS. Diabetes, 41: 557– 570.
  • 43. McEwen BS, Tanapat P, Weiland NG (1999) Inhibition of dendritic spine induction on hippocampal CA1 pyramidal neurons by a non-steroidal estrogen antagonist in female rats. Endocrinology, 140: 1044–1047.
  • 44. Min Y, Lowy C, Ghebremeskel K, Thomas B, Offley-Shore B, Crawford M, (2005) Unfavorable effect of type 1 and type 2 diabetes on maternal and fetal essential fatty acid status: a potential marker of fetal insulin resistance. Am J Clin Nutr, 82: 1162–1168.
  • 45. Nelson CA, Wewerka S, Thomas KM, Tribby-Walbridge S, deRegnier R, Georgieff M (2000) Neurocognitive sequelae of infants of diabetic mothers. Behav Neurosci, 114: 950–956.
  • 46. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal, 9: 343–353.
  • 47. Okouchi M, Okayama N, Aw TY (2005) Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal induced apoptosis: influence of cellular redox. Curr Neurovasc Res, 2: 13–22.
  • 48. Ornoy A (2005) Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev, 3: 104–113.
  • 49. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. 6th Ed. Academic Press, New York, p. 451.
  • 50. Persaud ODD (2007) Maternal diabetes and the consequences for her offspring. Journalon Developmental Disabilities, 13: 101–134.
  • 51. Piotrowski P, Wierzbicka K, Smiałek M (2001) Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischemia treated with antioxidants. Folia Neuropathol, 39: 147–154.
  • 52. Plagemann A, Harder T, Lindner R, Melchior K, Rake A, Rittel F, Rohde W, Dorner G (1998) Alterations of hypothalamic catecholamines in the newborn offspring of gestational diabetic mother rats. Dev Brain Res, 109: 201–209.
  • 53. Reagan LP, Gorovits N, Hoskin EK, Alves SE, Katz EB, Grillo CA, Piroli GG, McEwen B, Charron MJ (2001) Localization and regulation of GLUT-1 glucose transporter in the hippocampus of streptozotocin diabetic rats. PNAS USA, 98: 2820–2825.
  • 54. Reagan LP, McEwen BS (2002) Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. NeuroReport, 13:1801–1804.
  • 55. Ryan CM (1988) Neurobehavioral complications of type I diabetes, Examination of possible risk factors. Diabetes Care, 11: 86–93.
  • 56. Rizzo T, Metzger BE, Burns WJ, Burns K (1991) Correlations between antepartum maternal metabolism and child intelligence. N Engl J Med, 325: 911–916.
  • 57. Romero G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, 51: 2241–2248.
  • 58. Russell JW, Feldman EL (1999) Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm Metab Res, 31: 90–96.
  • 59. Schoenle EJ, Schoenle D, Molinari L, Largo RH (2002) Impaired intellectual development in children with type 1 diabetes: association with HbA,o, age and diagnosis and sex. Diabetologia, 45:108–114.
  • 60. Saravia FE, Gonzalez S, Roig P, Alves V, Homo-Delarche F, De Nicola AF (2001) Diabetes increases the expression of hypothalamic neuropeptides in a spontaneous model of type I diabetes, the nonobese diabetic (NOD) mouse. Cell Mol Neurobiol, 21: 15– 27.
  • 61. Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez S, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type I diabetes: the nonobese diabetic (NOD) and streptozotocin treated mice. Brain Res, 957: 345–353.
  • 62. Siddappa AM, Georgieff MK, Wewerka S, Worwa C, Nelson CA, Deregnier RA (2004) Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res, 55: 1034–1041.
  • 63. Tehranipour M, Khakzad MR (2008) Effect of maternal diabetes on hippocampal density in neonatal mice. J Biol Sci, 8:1027–1032.
  • 64. Uchida K, Kumihashi K, Kurosawa S, Kobayashi T, Itoi K, Machida T (2002) Stimulatory effects of prostaglandin E2 on neurogenesis in the dentate gyrus of the adult rat. Zoolog Sci, 19: 1211–1216.
  • 65. Valastro B, Cossette N, Lavoie N, Gagnon S, Trudeau F, Massicotte G (2002) Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus. Diabetologia, 45: 642–650.
  • 66. Wijendran V, Bendel RB, Couch SC, Philipson EH, Cheruku S, LammiKeefe CJ (2000) Fetal erythrocyte phospholipid polyunsaturated fatty acids are altered in pregnancy complicated with gestational diabetes mellitus. Lipids, 35: 927–931.
  • 67. Yurii V, Lebeda MA, Orlovskya AG, Nikonenkoa GA (2008) Early reaction of astroglial cells in rat hippocampus to streptozotocin-induced diabetes. Neurosci Lett, 444: 181–185.
  • 68. Zhao J, Del Bigio MR, Weiler HA (2009) Maternal arachidonic acid supplementation improves neurodevelopment of offspring from healthy and diabetic rats. Prostaglandins Leukot Essent Fatty Acids, 81: 349–356.
  • 69. Ziegler D, Sohr CG, Nourooz-Zadeh, J (2004) Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care, 27: 2178–2183.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d15dad85-5bf3-4dd8-9936-481a82b23a70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.