PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 57 |

Tytuł artykułu

Study on haloalkaliphilic sulfur-oxidizing bacterium for thiosulfate removal in treatment of sulfidic spent caustic

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Due to the disadvantages of physiochemical methods for sulfidic spent caustic treatment, attentions are drawn to the environmental-friendly biotreatments including sulfur-oxidizing haloalkaliphiles. Thioalkalivibrio versutus DSM 13738 was grown at alkaline (pH10) autotrophic medium with sodium carbonate/bicarbonate as the sole source of carbon and amended with sodium thiosulfate as the electron and energy source. The effect of various parameters including temperature (25-40 °C), pH (8-11), NaCl concentration (0.5-5 % w/v) and sodium thiosulfate concentrations (100-750 mM) was evaluated on bacterial growth and thiosulfate removal. This strain could eliminate sodium thiosulfate at very high concentrations up to 750 mM. The results showed that the highest specific growth rate was pH 9.5 and thiosulfate removal of Thioalkalivibrio versutus occurred at pH 10.5. The optimum salt concentration for thiosulfate removal was 2.5 % w/v and 5 % NaCl and specific growth rate elevated 2.5% w/v. It was also specified that this strain thrives occurred in 37 ºC and at 35 and 37 ºC higher removal of thiosulfate. Following chemical oxidation of sulfide to thiosulfate, application of Thioalkalivibrio versutus could be promising for spent caustic treatment. Since thiosulfate is utilized as an energy source, highest removal efficiency occurred at marginally different conditions compared to optimal growth.

Wydawca

-

Rocznik

Tom

57

Opis fizyczny

p.49-57,fig.,ref.

Twórcy

autor
  • Extremophiles Laboratory, Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
  • Extremophiles Laboratory, Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
  • Research Institute of Petroleum Industry, Tehran, Iran
  • Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
autor
  • Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
autor
  • Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Bibliografia

  • [1]. S. Najirad et al., Bioremediation of gasoil by two indigenous bacterial strains in contaminated soils, International Journal of Biosciences (IJB). 3(11) (2013) 71-76.
  • [2]. O.E. Idise et al., Modification of Bacillus cereus and Pseudomonas aeruginosa isolated from a petroleum refining effluent for increased petroleum product degradation, African Journal of Biotechnology. 9(22) (2010) 3303-3307.
  • [3]. P.L.F. van den Bosch, Biological sulfide oxidation by natron-alkaliphilic bacteria: application in gas desulfurization. 2008.
  • [4]. P.O. Okerentugba, O.U. Ezeronye, Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria, African Journal of Biotechnology. 2(9) (2004) 288-292.
  • [5]. J.W. Patterson, Industrial wastewater treatment technology, 1985.
  • [6]. G. Veerabhadraiah, N. Mallika, S. Jindal, Spent caustic management: Remediation review, Hydrocarbon Processing. 90(11) (2011) 41-46.
  • [7]. D.Y. Sorokin, A.J.H. Janssen, G. Muyzer, Biodegradation potential of halo (alkali) philic prokaryotes, Critical reviews in environmental science and technology. 42(8) (2012) 811-856.
  • [8]. J.F. Paulino, J.C. Afonso, New strategies for treatment and reuse of spent sulfidic caustic stream from petroleum industry, Química Nova. 35(7) (2012) 1447-1452.
  • [9]. M. Al Zarooni, W. Elshorbagy, Characterization and assessment of Al Ruwais refinery wastewater, Journal of hazardous materials. 136(3) (2006) 398-405.
  • [10]. R. Alnaizy, Economic analysis for wet oxidation processes for the treatment of mixed refinery spent caustic, Environmental Progress. 27(3) (2008) 295-301.
  • [11]. A. Olmos et al., Physicochemical characterization of spent caustic from the OXIMER process and sour waters from Mexican oil refineries, Energy & fuels. 18(2) (2004) 302-304.
  • [12]. C. Maugans, M. Howdeshell, S. De Haan, Update: Spent caustic treatment, Hydrocarbon Processing. 89(4) (2010) 61.
  • [13]. J.A. Conner et al., Biotreatment of refinery spent-sulfidic caustic using an enrichment culture immobilized in a novel support matrix, Applied biochemistry and biotechnology. 84(1-9) (2000) 707-719.
  • [14]. M. de Graaff et al., Application of a 2-step process for the biological treatment of sulfidic spent caustics, Water research. 46(3) (2012) 723-730.
  • [15]. M. De Graaff et al., Biological treatment of refinery spent caustics under halo-alkaline conditions, Bioresource technology. 102(15) (2011) 7257-7264.
  • [16]. J. Sipma et al., Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols, Water research. 38(20) (2004) 4331-4340.
  • [17]. C.E. Ellis, Wet air oxidation of refinery spent caustic, Environmental Progress. 17(1) (1998) 28-30.
  • [18]. N. Keramati, A. Moheb, M.R. Ehsani, NaOH Recovery from MEROX Tower Waste Stream Using the Electrodialysis Process, Separation Science and Technology. 46(1) (2010) 27-32.
  • [19]. J. Levec, A. Pintar, Catalytic wet-air oxidation processes: a review, Catalysis Today. 124(3) (2007) 172-184.
  • [20]. L. Zhang et al., Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review, Water research. 42(1) (2008) 1-12.
  • [21]. A. Gonzalez-Sanchez, S. Revah, Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor, Water Science and Technology. 59(7) (2009) 1415.
  • [22]. A. Kolhatkar, K.L. Sublette, Biotreatment of refinery spent sulfidic caustic by specialized cultures and acclimated activated sludge, Applied biochemistry and biotechnology. 57(1) (1996) 945-957.
  • [23]. J.J. Park et al., Application of spent sulfidic caustics for autotrophic denitrification in a MLE process and their microbial characteristics by fluorescence in situ hybridization, Korean Journal of Chemical Engineering. 25(3) (2008) 542-547.
  • [24]. B. Rajganesh et al., Biotreatment of refinery spent sulfidic caustics, Biotechnology progress. 11(2) (1995) 228-230.
  • [25]. E. Smet, H. Van Langenhove, Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry, Biodegradation. 9(3-4) (1998) 273-284.
  • [26]. D.H. Zitomer, D. Owens, R.E. Speece, Methanethiol production as an indicator of toxicity in anaerobic treatment, Water science and technology. 42(5-6) (2000) 231-235.
  • [27]. D.Y. Sorokin et al., Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes, International Journal of Systematic and Evolutionary Microbiology. 51(2) (2001) 565-580.
  • [28]. D.Y. Sorokin et al., Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake, International Journal of Systematic and Evolutionary Microbiology. 52(6) (2002) 2175-2182.
  • [29]. K.Y. Chen, J.C. Morris, Kinetics of oxidation of aqueous sulfide by oxygen, Environmental Science & Technology. 6(6) (1972) 529-537.
  • [30]. A. González-Sánchez, S. Revah, The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium, Enzyme and microbial technology. 40(2) (2007) 292-298.
  • [31]. F.J. Millero et al., Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength, Environmental science & technology. 21(5) (1987) 439-443.
  • [32]. D. Sorokin et al., Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes, Archives of microbiology. 176(3) (2001) 170-177.
  • [33]. D.A. Benson et al., GenBank, Nucleic acids research. 36(suppl 1) (2008) D25-D30.
  • [34]. S.B. Primrose, R. Twyman, Principles of gene manipulation and genomics. 2013: John Wiley & Sons.
  • [35]. D.Y. Sorokin, J.G. Kuenen, Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes, FEMS Microbiology Reviews. 29(4) (2005) 685-702.
  • [36]. S. Gadekar, M. Nemati, G.A. Hill, Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry, Water research. 40(12) (2006) 2436-2446.
  • [37]. H. Banciu et al., Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes, FEMS microbiology letters. 243(1) (2005) 181-187.
  • [38]. C.H. Lim et al., Optimization of growth medium for efficient cultivation of Lactobacillus salivarius i 24 using response surface method, Yeast. 1 (2007) 1-5.
  • [39]. H.L. Banciu et al., Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes, Extremophiles. 12(3) (2008) 391-404.
  • [40]. D.P. Kelly, L.A. Chambers, P.A. Trudinger, Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate, Analytical Chemistry. 41(7) (1969) 898-901.
  • [41]. J.M. Cha, W.S. Cha, J.h. Lee, Removal of organo-sulphur odour compounds by Thiobacillusnovellus SRM, sulphur-oxidizing microorganisms, Process Biochemistry. 34(6) (1999) 659-665.
  • DOI References
  • [1] S. Najirad et al., Bioremediation of gasoil by two indigenous bacterial strains in contaminated soils, International Journal of Biosciences (IJB). 3(11) (2013) 71-76. 10.12692/ijb/3.11.71-76
  • [4] P.O. Okerentugba, O.U. Ezeronye, Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria, African Journal of Biotechnology. 2(9) (2004) 288-292. 10.5897/ajb2003.000-1058
  • [5] J.W. Patterson, Industrial wastewater treatment technology, (1985). 10.1036/1097-8542.757309
  • [7] D.Y. Sorokin, A.J.H. Janssen, G. Muyzer, Biodegradation potential of halo (alkali) philic prokaryotes, Critical reviews in environmental science and technology. 42(8) (2012) 811-856. 10.1080/10643389.2010.534037
  • [8] J.F. Paulino, J.C. Afonso, New strategies for treatment and reuse of spent sulfidic caustic stream from petroleum industry, Química Nova. 35(7) (2012) 1447-1452. 10.1590/s0100-40422012000700027
  • [9] M. Al Zarooni, W. Elshorbagy, Characterization and assessment of Al Ruwais refinery wastewater, Journal of hazardous materials. 136(3) (2006) 398-405. 10.1016/j.jhazmat.2005.09.060
  • [10] R. Alnaizy, Economic analysis for wet oxidation processes for the treatment of mixed refinery spent caustic, Environmental Progress. 27(3) (2008) 295-301. 10.1002/ep.10261
  • [11] A. Olmos et al., Physicochemical characterization of spent caustic from the OXIMER process and sour waters from Mexican oil refineries, Energy & fuels. 18(2) (2004) 302-304. 10.1021/ef030053c
  • [13] J.A. Conner et al., Biotreatment of refinery spent-sulfidic caustic using an enrichment culture immobilized in a novel support matrix, Applied biochemistry and biotechnology. 84(1-9) (2000) 707-719. 10.1385/abab:84-86:1-9:707
  • [14] M. de Graaff et al., Application of a 2-step process for the biological treatment of sulfidic spent caustics, Water research. 46(3) (2012) 723-730. 10.1016/j.watres.2011.11.044
  • [15] M. De Graaff et al., Biological treatment of refinery spent caustics under halo-alkaline conditions, Bioresource technology. 102(15) (2011) 7257-7264. 10.1016/j.biortech.2011.04.095
  • [16] J. Sipma et al., Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols, Water research. 38(20) (2004) 4331-4340. 10.1016/j.watres.2004.08.022
  • [17] C.E. Ellis, Wet air oxidation of refinery spent caustic, Environmental Progress. 17(1) (1998) 28-30. 10.1002/ep.670170116
  • [18] N. Keramati, A. Moheb, M.R. Ehsani, NaOH Recovery from MEROX Tower Waste Stream Using the Electrodialysis Process, Separation Science and Technology. 46(1) (2010) 27-32. 10.1080/01496395.2010.487846
  • [19] J. Levec, A. Pintar, Catalytic wet-air oxidation processes: a review, Catalysis Today. 124(3) (2007) 172- 184. 10.1016/j.cattod.2007.03.035
  • [20] L. Zhang et al., Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review, Water research. 42(1) (2008) 1-12. 10.1016/j.watres.2007.07.013
  • [21] A. Gonzalez-Sanchez, S. Revah, Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor, Water Science and Technology. 59(7) (2009) 1415. 10.2166/wst.2009.121
  • [22] A. Kolhatkar, K.L. Sublette, Biotreatment of refinery spent sulfidic caustic by specialized cultures and acclimated activated sludge, Applied biochemistry and biotechnology. 57(1) (1996) 945-957. 10.1007/bf02941775
  • [23] J.J. Park et al., Application of spent sulfidic caustics for autotrophic denitrification in a MLE process and their microbial characteristics by fluorescence in situ hybridization, Korean Journal of Chemical Engineering. 25(3) (2008) 542-547. 10.1007/s11814-008-0091-5
  • [24] B. Rajganesh et al., Biotreatment of refinery spent sulfidic caustics, Biotechnology progress. 11(2) (1995) 228-230. 10.1021/bp00032a017
  • [27] D.Y. Sorokin et al., Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes, International Journal of Systematic and Evolutionary Microbiology. 51(2) (2001). 10.1099/00207713-51-2-565
  • [28] D.Y. Sorokin et al., Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfuroxidizing bacterium from a soda lake, International Journal of Systematic and Evolutionary Microbiology. 52(6) (2002) 2175-2182. 10.1099/ijs.0.02339-0
  • [29] K.Y. Chen, J.C. Morris, Kinetics of oxidation of aqueous sulfide by oxygen, Environmental Science & Technology. 6(6) (1972) 529-537. 10.1021/es60065a008
  • [30] A. González-Sánchez, S. Revah, The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium, Enzyme and microbial technology. 40(2) (2007) 292-298. 10.1016/j.enzmictec.2006.04.017
  • [31] F.J. Millero et al., Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength, Environmental science & technology. 21(5) (1987) 439-443. 10.1021/es00159a003
  • [32] D. Sorokin et al., Isolation and properties of obligately chemolithoautotrophic and extremely alkalitolerant ammonia-oxidizing bacteria from Mongolian soda lakes, Archives of microbiology. 176(3) (2001) 170-177. 10.1007/s002030100310
  • [33] D.A. Benson et al., GenBank, Nucleic acids research. 36(suppl 1) (2008) D25-D30. 10.1093/nar/gkm929
  • [35] D.Y. Sorokin, J.G. Kuenen, Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes, FEMS Microbiology Reviews. 29(4) (2005) 685-702. 10.1016/j.femsre.2004.10.005
  • [36] S. Gadekar, M. Nemati, G.A. Hill, Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry, Water research. 40(12) (2006) 2436-2446. 10.1016/j.watres.2006.04.007
  • [37] H. Banciu et al., Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes, FEMS microbiology letters. 243(1) (2005) 181-187. 10.1016/j.femsle.2004.12.004
  • [39] H.L. Banciu et al., Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes, Extremophiles. 12(3) (2008). 10.1007/s00792-008-0142-1
  • [40] D.P. Kelly, L.A. Chambers, P.A. Trudinger, Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate, Analytical Chemistry. 41(7) (1969) 898-901. 10.1021/ac60276a029
  • [41] J.M. Cha, W.S. Cha, J. h. Lee, Removal of organo-sulphur odour compounds by Thiobacillusnovellus SRM, sulphur-oxidizing microorganisms, Process Biochemistry. 34(6) (1999) 659-665. 10.1016/s0032-9592(98)00139-3

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-d151afd0-ab16-4823-ab0c-a7aa27be258e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.