PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Using electrical profiling to determine soil petrophysical parameters in an agricultural field

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The soils of a 10-ha agricultural field in the municipality of Guasave, Sinaloa, were characterized through electrical measurements and determination of petrophysical parameters. An electrical profiling survey for AB/2 = 2 m and 3 m was carried out in the study area. The apparent resistivity, soil moisture, and pore water salinity values were recalculated into petrophysical values using the Petrowin software, resulting in fine (clay+silt) content, and porosity and hydraulic conductivity maps. Using the Bouyoucos method, soil texture was determined for 30 soil samples collected in points matched with EP measurement points. The results of textural analysis indicated that the study area is quite complex, with the presence of eight textures of soil, and soil moisture and groundwater salinity variable in twice and five times, respectively. The fines content values obtained from Petrowin software and the Bouyoucos method were compared showing a high correlation (R = 0.91), giving reliability to fast and inexpensive techniques such as electrical profiling for the determination of the soil petrophysical parameters in extensive agricultural land.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1077-1087,fig.,ref.

Twórcy

  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachin, Guasave, Sinaloa, Mexico
  • Facultad de Ingenieria, Universidad Autonoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachín, Guasave, Sinaloa, Mexico
  • Facultad de Ingeniería, Universidad Autonoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • División de Geociencias Aplicadas, Instituto Potosino de Investigacion Científica y Tecnologica Camino a la Presa San Jose 2055, Lomas 4 Seccion, San Luis Potosi, S.L.P., Mexico
  • Instituto Politecnico Nacional Unidad CIIDIR-Oaxaca, Hornos No. 1003, Noche Buena, Santa Cruz Xoxocotlan, Oaxaca, Mexico
  • Escuela de Ciencias Económicas y Administrativas, Universidad Autonoma de Sinaloa, Blvd. Juan de Dios Batiz s/n, San Joachin, Guasave, Sinaloa, Mexico

Bibliografia

  • 1. KAZMI D., QASIM S., SIDDIQUI F.I., AZHAR S.B. Exploring the Relationship between Moisture Content and Electrical Resistivity for Sandy and Silty Soils. International Journal of Engineering Science Invention, 5 (7), 42, 2016.
  • 2. SUDDUTH K.A., DRUMMOND S.T., KITCHEN N.R. Measuring and interpreting soil electrical conductivity for precision agriculture. Second International Geospatial Information in Agriculture and Forestry Conference, Lake Buena Vista, Florida, 2000.
  • 3. WILLIAMS B.G., BAKER G.C. An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards. Australian Journal of Soil Research, 20, 107, 1982.
  • 4. MCKENZIE R.C., CHOMISTEK W., CLARK N.F. Conversion of electromagnetic induction readings to saturated paste extract values in soils for different temperature, texture, and moisture conditions. Canadian Journal of Soil Science, 69, 25, 1989.
  • 5. CORWIN D.L., LESCH S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Computers and electronics in agriculture, 46 (1), 103, 2005.
  • 6. AMAKOR X.N., JACOBSON A.R., CARDON G.E., HAWKS A.A. comparison of salinity measurement methods based on soil saturated pastes. Geoderma, 219, 32, 2014.
  • 7. FRIEDMAN S.P. Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46, 45, 2005.
  • 8. HEIL K., SCHMIDHALTER U. Characterization of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Computers & Geosciences, 39, 98, 2012.
  • 9. SHEVNIN V., DELGADO O., MOUSATOV A., RYJOV A. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data. Geofísica Internacional, 45 (3), 195, 2006.
  • 10. SHEVNIN V., MOUSATOV A., RYJOV A.A., DELGADO-RODRÍGUEZ O. Estimation of clay content in soil based on resistivity modeling and laboratory measurements. Geophysical Prospecting, 55, 265, 2007.
  • 11. DELGADO-RODRÍGUEZ O., LADRÓN DE GUEVARA-TORRES M., SHEVNIN V., RYJOV A. Estimation of soil petrophysical parameters based on electrical resistivity values obtained from lab and in-field measurements. Geofísica Internacional, 51 (1), 5, 2012.
  • 12. KELLER G., FRISCHKNECHT F. Electrical Methods in Geophysical Prospecting, 517, 1966.
  • 13. POZDNYAKOVA L., POZDNYAKOV A., ZHANG R. Application of geophysical methods to evaluate hydrology and soil properties in urban areas. Urban Water, 3 (3), 205, 2001.
  • 14. INEGI, Prontuario municipal geographic information of the United Mexican States, Guasave, Sinaloa, key Geostatistics 25011, México, 1, 2009.
  • 15. PEINADO H.J., GREEN C.R., HERRERA J., ESCOLERO O.A., DELGADO O., BELMONTE S.I., LADRON DE GUEVARA M. Quality and suitability of agricultural and domestic water aquifer of Sinaloa’s River, coastal portion use. Hidrobiológica, 21, 63, 2011.
  • 16. FORSYTHE W. Soil physics: Laboratory Manual. IICA. Saint Joseph, Costa Rica, 1985.
  • 17. SEMARNAT. NOM-021-RECNAT-2000: The specifications for fertility, salinity and soil classification. Studies, sampling and analysis. Official Journal of the Federation 85, 2000.
  • 18. BOUYOUCOS G. J. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54 (5), 464, 1962.
  • 19. HANNA INSTRUMENTS. HI 98129 and HI 98130. Instruction Manual, http://hannainst.com/hi98129-ph-ectds-tester.html#downloads, 2005.
  • 20. AUGE M. Geoelectric Methods for Groundwater Exploration. University of Buenos Aires, Buenos Aires, 2008.
  • 21. UCHA E.L.D., MEJIAS J.M., BOSCH A.P. Study of aquifers in igneous and metamorphic rocks through surveys and electrical profiling: application to the Valley of La Granjuela (Córdoba). I Spanish Congress of Geology, Association of Geologists of Madrid, 261, 1984.
  • 22. PERDOMO S. Electrical tomography in support of archaeological research (Doctoral dissertation, Faculty of Astronomy and Geophysics), 2013.
  • 23. ADEBISI N.O., ARIYO S.O., SOTIKARE P.B. Electrical resistivity and geotechnical assessment of subgrade soils in southwestern part of Nigeria. Journal of African Earth Sciences, 119, 256, 2016.
  • 24. CARDENAS L.M. Study of grounding systems of buildings of: Bellas Artes, Multidisciplinary Center, Industrial, Administrative, Welfare University and Center for Innovation and Technological Development of Technological University of Pereira, 2015.
  • 25. JORDÁ L. Geophysical techniques reconnaissance ground: ground penetrating radar and electrical tomography. Practical cases. Basement and Urban Work, 34, 2005.
  • 26. JAKOSKY J.J. Exploration Geophysics. Times-Mirror Press, 1195, 1950.
  • 27. RYJOV A., SHEVNIN V. Theoretical calculation of rocks electrical resistivity and some examples of algorithm's application. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2002.
  • 28. RYJOV A.A., SUDOPLATOV A.D. The calculation of specific electrical conductivity for sandy-clayed rocks and the usage of functional cross-plots for the decision of hydrogeological problems. In: «Scientific and technical achievements and advanced experience in the field of geology and mineral deposits research. Moscow, 27, 1990.
  • 29. SHARAPANOV N.N., CHERNIAK G.J., BARON V.A. Geophysical methods at hydrogeological survey for land improvement. Moscow, Nedra, 1974.
  • 30. RYJOV A. The main IP peculiarities of rocks. In: Application of IP method for mineral deposits› research. Moscow, 5, 1987.
  • 31. DELGADO O., PEINADO H.J., GREEN C.R., HERRERA J., SHEVNIN V. Determination of hydraulic conductivity and fines content in soils near an unlined irrigation canal in Guasave, Sinaloa. J. Soil Sci. Plant Nutr., 11 (3), 13, 2011.
  • 32. CEJPEK J., KURÁZ V., FROUZ J. Hydrological properties of soils in reclaimed and unreclaimed sites after brown-coal mining. Polish Journal of Environmental Studies, 22 (3), 645, 2013.
  • 33. LI H., ZHANG F., MAO S., ZHU J., YANG Y., HE H., LI Y. Effects of Grazing Exclusion on Soil Properties in Maqin Alpine Meadow, Tibetan Plateau, China. Polish Journal of Environmental Studies, 25 (4), 1583, 2016.
  • 34. CZABAN J., SIEBIELEC G. Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); effect on pH, CEC, and macro-and micronutrients. Polish Journal of Environmental Studies, 22 (6), 1669, 2013.
  • 35. VAEZI A.R., HASANZADEH H., CERDÀ A. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. Catena, 142, 221, 2016.
  • 36. UMWENI A.S., OGUNKUNLE A.O. Irrigation Capability Evaluation of Illushi Floodplain, Edo State, Nigeria. International Soil and Water Conservation Research, 2 (2), 79, 2014.
  • 37. MAZUREK R., KOWALSKA J., GĄSIOREK M., SETLAK M. Micromorphological and physico-chemical analyses of cultural layers in the urban soil of a medieval city - A case study from Krakow, Poland. Catena, 141, 73, 2016.
  • 38. BARDHAN G., RUSSO D., GOLDSTEIN D., LEVY G.J. Changes in the hydraulic properties of a clay soil under longterm irrigation with treated wastewater. Geoderma, 264, 1, 2016.
  • 39. VARGAS J.R. Manejo integrado de aguas subterráneas: un reto para el futuro. Euned, 2002.
  • 40. FALEIRO E., ASENSIO G., MORENO J. Improved measurements of the apparent resistivity for small depths in Vertical Electrical Soundings. Journal of Applied Geophysics, 131, 117, 2016.
  • 41. PIERWOŁA J. Investigation of soil contamination using resistivity and induced polarization methods. Polish Journal of Environmental Studies, 22 (6), 1781, 2013.
  • 42. RUDOLPH S., WONGLEECHAROEN C., LARK R.M., MARCHANT B.P., GARRÉ S., HERBST M., WEIHERMÜLLER L. Soil apparent conductivity measurements for planning and analysis of agricultural experiments: A case study from Western-Thailand. Geoderma, 267, 220, 2016.
  • 43. JADOON Q.K., ROBERTS E., BLENKINSOP T., RAPHAEL A.J., SHAH S.A. Mineralogical modelling and petrophysical parameters in Permian gas shales from the Roseneath and Murteree formations, Cooper Basin, Australia. Petroleum Exploration and Development, 43 (2), 277, 2016.
  • 44. KAREEM R., CUBILLAS P., GLUYAS J., BOWEN L., HILLIER S., GREENWELL H.C. Multi-technique Approach to the Petrophysical Characterization of Berea Sandstone Core Plugs (Cleveland Quarries, USA). Journal of Petroleum Science and Engineering, 2016.
  • 45. SHAXSON F., BARBER R., Optimizing soil moisture for plant production: the significance of soil porosity. FAO Soils Bulletin 79, Rome, Italy, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d125a5b4-25f7-43c5-ac20-3416e754f315
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.